


*£.VJ' «
• U r

:U <6 Ok

cb Jk <£ ^^ ^
<

1 <&>

* * *

&\.^ -

rJC

(

^tf w ^ ^

6- Q^ o WWW -d5 0<s ©

^o*
^ %-\^^



^.o* ^c*
J?
£°*

- r.v-

.??<fê
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PREFACE.

The stereotype plates of my Elements of Analytical Geom-

etry having become so much worn by long-continued use that

it was thought desirable to renew them, I have improved the

opportunity to make a thorough revision of the work. In do-

ing this, it has been thought best to extend considerably the

plan of the work, and accordingly I have not merely added a

third part on Geometry of three dimensions, but have intro-

duced new matter in nearly every section of the book. I have

aimed to illustrate every portion of the subject, as far as prac-

ticable, by numerical examples, generally of the simplest kind,

the main object being to make sure that the student under-

stands the meaning of the formulae which he has learned. In

making this revision I have been favored with the constant

assistance of Prof. H. A. Newton, who has carefully examined

every portion of the volume, and to whom I am indebted for

numerous suggestions both as to the plan and execution of the

work. It is hoped that the volume in its present form will be

found adapted to the wants of mathematical students in our

colleges and higher schools ; and that, if any should desire to

prosecute this subject further, they will find this volume a good

introduction to larger and more difficult treatises.
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ANALYTICAL GEOMETRY.

PART I.

DETERMINATE GEOMETRY.

SECTION I.

APPLICATION OF ALGEBRxV TO GEOMETRY,

1. We have seen in Geometry (pages 40, 69, and 162) that

all geometrical magnitudes,- including angles, lines, surfaces,

and solids, may be expressed either exactly or approximately

by numbers, and for this purpose it is only necessary to take

one of these magnitudes as the unit of measure. If we denote

by «, J, and c the number of linear units contained in the ad-

jacent edges of a rectangular parallelopiped, then will db, ac,

be denote the magnitude of three of its faces, and abc will de-

note its volume.

2. In like manner, every geometrical magnitude may be rep-

resented by algebraic symbols, and the relations between dif-

ferent magnitudes, or different parts of the same figure, may
also be denoted by symbols. We may then operate upon these

representatives by the known methods of Algebra, and thus

deduce relations before unknown ; and since the operations

are generally very much abridged by the use of algebraic sym-

bols, the algebraic method has many advantages over the geo-

metrical. This method is applicable either to the solution of

problems or to the demonstration of theorems.

3. Geometrical problems may be divided into two classes

:

determinate and indeterminate. Determinate problems are

those in which the number of independent equations is equal

to the number of unknown quantities, and therefore the un-

A2
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known quantities can have but a finite number of values. In-

determinate problems are those in which the number of inde-

pendent equations is less than the number of unknown quan-

tities involved, and therefore the unknown quantities may have

an infinite number of values.

4. If it is required to determine the magnitude of certain

lines from the knowledge of several other lines connected with

the former in the same figure, wTe first draw a figure which rep-

resents all the parts of the problem, both those which are given

and those which are required to be found. We denote both

the known and unknown parts of the figure, or as many of

them as may be necessary, by convenient symbols. We then

observe the relations which the several parts of the figure bear

to each other, from which, by the aid of the proper theorems

in Geometry, we derive as many independent equations as

there are unknown quantities employed. By solving these

equations we obtain expressions for the unknown quantities in

terms of the known quantities.

If a theorem is to be demonstrated, we express by algebraic

equations the relations which exist between the different parts

of the figure, and then transform these equations in such a

manner as to deduce an equation which expresses the theorem

sought.~o

5. In order to illustrate these principles, let it be required to

deduce the various properties of a right-angled triangle from

the principles that two equiangular triangles have their ho-

mologous sidesproportional, and that the perpendicular drawn

from the right angle of a right-angled triangle to the hypothe-

nuse divides the whole triangle into similar triangles.

Let the triangle ABC be right angled at A

;

from A draw AD perpendicular to BC, and let

us put BC= a, AC— Z>, AB = c,AD= A,BD=m9

c and DC— ?i. Then, by similar triangles, we
have the proportions
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a:b::b:n
)

( b2= a?i. (1)

a: c:\c\m > whence we deduce < & — am. (2)•j c2 = <

a: c:\b\h ) I be= ah. (3)

Moreover, we have a=m+ n. (4)

These four equations involve the various properties of right-

angled triangles, and these properties may be deduced by suit-

able transformations of these equations.
*

1st. Equations (1) and (2), or rather the proportions from

which they are deduced, show that each side about the right

angle is a mean proportional between the entire hypothennse

and its adjacent segment.

2d. By adding equations (1) and (2) member to member, we
obtain

b2
-f c

2 —am + an— a(m+ n)
;

whence, from equation (4), we obtain b2+ c2=a2
; that is, the

square of the hypothennse is equal to the sum of the squares

of the other two sides of the triangle,

3d. By multiplying equations (1) and (2) member by mem-
ber, we obtain

b2c2— a2mn.

But from equation (3) we have also b2
c
2— a2h2

.

Hence a2?n?i= a2h2

y
or h2~mn; that is,

m:h::h: n,

or, the perpendicular drawnfrom the vertex of the right an-

gle upon the hypothennse is a mean proportional between the

two segments of the hypothennse.

4th. By dividing equation (1) by equation (2) member by

member, we obtain

b2 an 72 9—=— / or o
2
:c2 ::n: m :

c
2 am

that is, the squares described upon the sides about the right

angle are proportional to the segments of the hypothennse.

Thus we see that every equation deduced from the equations

(1), (2), (3), and (4), when translated into geometrical language,

is a geometrical theorem.
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6. The four equations of the preceding article contain six

quantities, of which, when a certain number are given, it may
be required to deduce the values of the other quantities.

Suppose we have given the hypothenuse BC, and the per-

pendicular AD, and it is required to determine the other two

sides of the triangle, as also the two segments of the hypothe-

nuse.

We have already found b2+ c
2= a2

,

and from equation (3) wre have 2bc—2ah.

By adding and subtracting successively, we obtain

(b+ c)
2= a2+ 2ah;

and (b— c)
2— a2— 2ah.

whence b+c= \/a2 + 2ah ; b—c~ yV— 2ah.

Knowing the sum and difference of the two sides b and <?, by a

well-known principle (Alg., p. 89) we obtain

the greater side b=^^a2 -\-2ah+^^a2—2ah,

the less side c

—

J i/a
2 + 2ah— \ \/a

2— 2ah.

Since a, b, and c are now known quantities, the two segments

are given by equations (1) and (2).

The preceding principles will be further illustrated by the

following examples

:

Ex. 1. The base and sum ofthe hypothenuse andperpendic-
ular ofa right-angled triangle are given, tofind theperpendic-

%dai\

Let ABC be the proposed triangle, right angled

at B. Represent the base AB by £, the perpendic-

ular BC by #, and the sum of the hypothenuse and

perpendicular by s; then the hypothenuse will be

represented by s-x.

By Geom.,B.IV.,Pr.ll, AB^+BC^AC2
;

l2 + x2= (s—x)2= s
2—2sx+ x2

.

b2 =s2—2sx,

2s
'

that is, in any right-angled triangle, the perpendicular is equal

to the square of the sum of the hypothenuse and perpendicu-
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lar, diminished by the square of the base, and divided by twice

the sum of the hypothenuse and perpendicular.

Thus, if the base is 3 feet, and the sum of the hypothe-

S
2— b2

nuse and perpendicular 9 feet, the expression —— becomes

92—

3

2
.-

—

q-=4, the perpendicular.
Z x J

Ex. 2. The base and altitude ofany triangle are given, and
it is required tofind the side of the inscribed square.

Let ABC represent the given triangle,

and suppose the inscribed square DEFG
to bt3 drawn. Represent the base AB by

b, the perpendicular CH by h, and the side

of the inscribed square by x ; then will

CI be represented by h—x.
Then, because GF is parallel to the base AB, we have by

similar triangles (Geom., B. IV., Pr. 16),

AB:GF::CII:CI;
that is, b:x::h: h—x,
whence bh—bx— hx ;

bh
0T

>
X
~~J+h ;

that is, the side of the inscribed square is equal to the product

of the base and height divided by their sum.

Thus, if the base of the triangle is 12 feet, and the altitude

6 feet, the side of the inscribed square is found to be 4 feet.

Ex. 3. The base and altitude of any triangle are given, and
it is required to inscribe within it a rectangle whose sides shall

have to each other a given ratio.

Let ABC be the given triangle, and sup-

pose the required rectangle to be inscribed

within it. Represent the base AB by b,

the altitude CH by h, the altitude of the

rectangle DG by x, and its base DE by y ;

also let x : y : : 1 : n ; or y— nx.

Then, because the triangle CGF is similar to the triangle

CAB, we have
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AB:GF::CII:CI;
that is, b : y : : h : h—x ;

whence bh— bx—hy.
But, since y— nx

y
we have

bh—bx— hnx;

whence a

If we suppose ?i equals unity, in which case the rectangle

becomes a square, the preceding result becomes identical with

that in Example 2.

Ex. 4. It is required to divide a straight line in extreme

and mean ratio ; that is, into two parts such that one ofthem
shall be a mean proportional between the ivhole line and the

otherpart.

Suppose the .problem to be solved, and that C is such a point

of the line AB that wre have the proportion
,

AB:AC::AC:CB. A c B

Put AB=a, AC=#, whence CB=a— x.

The preceding proportion will then become
a.x».x.a ——x j

whence x2=a2—ax,

which equation, being solved, gives

Of these two values obtained by the solution of the equation,

the first is the only one which satisfies the enunciation of the

problem ; for the second is numerically greater than a, and

therefore can not represent apart of the given line. We shall

consider hereafter the geometrical signification of this equa-

tion.

Ex. 5. It is required to determine the side ofan equilateral

triangle described about a circle whose diameter is given.

Suppose ABC to be the required triangle described about a

circle whose diameter is given. Draw AE perpendicular to

BC, and join DC. Represent FE by d, and CE by x. The two

triangles ACE, CDE are similar, for each contains a right an-
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gle, and the angle CAE is equal to the angle

DCE. Hence we have the proportion

AC:EC::DC:DE.
But AC is double of EC; therefore DC is

double of DE, or is equal to d.

Now DC2-DE2=EC2
,

d2

or d 2—-r=x2
,4

whence x=^d\/3,

or 2x—d\/3;

that is, the side of the circumscribed triangle is equal to the

diameter of the circle multiplied by the square root of 3.

Ex. 6. Given the base h and the difference d between the hy-

pothenuse and perpendicular of a right-angled triangle, to find

the perpendicular.

A b2-d2

Am.—j-,

Ex. 7. Given the hypothenuse A of a right-angled triangle,

and the ratio of the base to the perpendicular, as m to n, to

find the perpendicular.

Ans.
-yjiin?+ n2

Ex. 8. Given the diagonal d of a rectangle, and the perime-

ter 4j9, to find the lengths of the sides.

/d 2

Ex. 9. If the diagonal of a rectangle be 10 feet, and its pe-

rimeter 28 feet, what are the lengths of the sides ?

Am.

Ex. 10. From any point within an equilateral triangle, per-

pendiculars are drawn to the three sides. It is required to find

the sum, s, of these perpendiculars.

# Arts, s— altitude of the triangle.

Ex. 11. Given the lengths of three perpendiculars, #, b, and
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c, drawn from a certain point in an equilateral triangle to the

three sides, to find the length of the three sides.

yo
Ex. 12. Given the difference, d, between the diagonal of a

square and one of its sides, to find the length of the sides.

Ans. d+dV2.
Ex. 13. In a right-angled triangle, the lines a and b, drawn

from the acute angles to the middle of the opposite sides, are

given, to find the lengths of the sides.

Ans. ^\J^-tA, and 2y
'4a

2-6a

15 ' V 15 '

Ex. 14. In a right-angled triangle, having given the hypothe-

nuse (a), and the difference between the base and perpendicu-

lar (2d), to determine the two sides.

/a*-2d 2
, 7 , la2-2d 2

7Ans. y —- \-d, and y— d,

Ex. 15. Having given the area (c) of a rectangle inscribed

in a triangle whose base is (b) and altitude (a), to determine

the height of the rectangle.

. a
,

la2
cae

2~ V 4 J'
Ex. 1G. Having given the ratio of the two sides of a triangle,

as m to n, together with the segments of the base, a and b,

made by a perpendicular from the vertical angle, to determine

the sides of the triangle.

/a2-b2
. ft

Ans. m\ — 5, and n\ -

-n* v m'— n'

Ex. 17. Having given the base of a triangle (2a), the sum of

the other two sides (2s), and the line (c) drawn from the verti-

cal angle to the middle of the base, to find the sides of the tri-

angle.-&*

Ans. s± i/a2+ c2—s2
.

Ex. 18. Having given the two sides (a) and (b) about the ver-

tical angle of a triangle, together with the line (c) bisecting
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that angle and terminating in the base, to find the segments of

the base.

. lab—<? t 7 la
Ans. ay —-7— , and o\J -

ab V ab

Ex. 19. The sum of the two legs of a right-angled triangle is

s, and the perpendicular let fall from the right angle upon the

hypothenuse is a. What is the hypothenuse of the triangle ?

A?is. -\/s
2+d2—a.

Ex. 20. Determine the radii of three equal circles, described

in a given circle, which touch each other, and also the circum-

ference of the given circle whose radius is E.

Ans. TL{2V3-3).
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SECTION II.

CONSTRUCTION OF ALGEBRAIC EXPRESSIONS.

7. The construction of an algebraic expression consists in

finding a geometrical figure which may be considered as rep-

resenting that expression ; that is, a figure in which the parts

shall have the same geometrical relation as that indicated in

the algebraic expression.

The elementary expressions, to which all algebraic expres-

sions not exceeding the second degree may be reduced, are six

in number, viz.,

, , , ab a?
x=a— o+ c—a.etc, x=—

,

x=—
9

c
7

<r

x—Vab
y

x=Vaz+ b2, x=Va2—b2
;

where a, b, c, etc., express the number of linear units contained

in the given lines.

Problem I. To construct the expression x— a+ b.

The symbols a and b, being supposed to stand for numerical

quantities, may be represented by lines. The length of a line

is determined by comparing it with some known standard, as

an inch or a foot. If the line AB contains the standard unit

, l_ a times, then AB may be taken to repre-
c

sent a. So, also, if BC contains the stand-

ard unit b times, then BC may be taken to represent b. There-

fore, in order to construct the expression a+ b, draw an indefi-

nite line AD. From the point A lay off a distance AB equal

to a, and from B lay off a distance BC equal to b ; then AC will

be a right line representing a+ b.

Problem II. To construct the expression x— a— b.

,
Draw the indefinite line AD. From

^ B D
tjie p int A lay off a distance AB equal to

a, and from B la}' off a distance BC, in the direction toward A,
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equal to b ; then will AC be the difference between AB and
BC ; consequently, it may be taken to represent the expression

a— b.

Problem III. To construct the expression

x=a—b+ c—d+e.
This expression may be written

x—a+c+e— (b+d).

To obtain an expression for a+c+e, draw an indefinite line

AX, and from A set off AB= &, . , , , . .

from B set off BC= c, from C set * * B E c D x

off CD= e; then &D= a+c+e.
Then set off from D toward A, DE= b ; from E set off

EF=d; then T>F= b+ d.

Hence AF=a+c+e—(b+d)—x.
In a similar manner we may construct any algebraic express

sion consisting of a series of letters connected together by the

signs + and —

.

In like manner we may construct the expressions x=3a,

K7 in • a 2d 3a /
x— ido^ etc.; also the expressions x=-, x=— , x=—, etc.

Problem IY. To construct the expression x=ab.

Let ABDC be a rectangle of which the side AB contains

the standard unit a times, and the side AC contains the same

unit b times. If through the points E,

F, etc., we draw lines parallel to AC, i—i

—

\—i

—

\—

i

and through the points G, H, etc., we h X
draw lines parallel to AB, the rectangle G 1

will be divided into square units. In A—-L—^—I—I—

I

the first row, AGIB, there are a square

units ; in the second row, GTIKI, there are also a square units

;

and there are as many rows as there are units in AC. There-

fore the rectangle ABDC contains a x b square units, or the

rectangle may be considered as representing the expression ab.

An algebraic expression of two dimensions may therefore

be represented by a surface.
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Problem V. To construct the expression x—abc.

Let there be a rectangular parallelopiped whose three adja-

cent edges contain the standard unit respectively a, 5, and c

times ; then, dividing the solid by planes parallel to its sides,

we may prove that the number of solid units in the figure is

axbxc, and consequently the parallelopiped may be consider-

ed as representing the expression abc.

An algebraic expression of three dimensions may therefore

be represented by a solid.

Problem VI. To construct the expression x——

.

From this equation we derive the proportion

that is, x is a fourth proportional to the three given lines c
y
a,

and b.

To obtain an expression for x, draw two

lines, AB, AC, making any angle with

each other. From A, upon the line AB,
lay off a distance AD=c, and AB=a,
and upon the line AC lay off a distance

AE=b. Join DE, and through B draw BO parallel to DE;
then will AC be equal to x.

For, by similar triangles, we have

AD:AB::AE:AC,
or c : a : : b : AC.

Hence AC=:

—

=x.
c

ct ci ^ h
The expression x=— , or x— , may be constructed in the

c o

same manner, since x is a fourth proportional to the three lines

c, a, and a.

Problem VII. To construct the expression x=—.

This expression can be put under the form

__ab c
X— 7" X —

•

a e
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First find a fourth, proportional m to the three quantities
7

d, a, and b, as in Prob. VI. This gives us m= -j. The pro-

mC
posed expression then becomes —, which may be constructed

in a similar manner.

In like manner more complicated expressions may be con-

a3
b2c

structed ; as 1o ~9 .

Problem VIII. To construct the expression x— Vab.

The expression Vab denotes a mean proportional between

a and b ; for we have

x2=axb; or a:x::x:b.

To construct this expression, draw an in- j)

definite straight line, and upon it set off

AB= a, and BC= b. On AC as a diameter, /
describe a semicircumference, and from B [_

draw BD perpendicular to AC, meeting the
A B

circumference in D ; then BD is a mean proportional between

AB and BC (Geom., Bk. IV., Prok23, Cor.). Hence BD is a

line representing the expression Vab—x.

Problem IX. To construct the expression x— Va2+b2
.

This expression represents the hypothenuse of a right-angled

triangle, of which a and b are the two sides c
about the right angle.

Draw the line AB, and make it equal to a ;

from B draw BC perpendicular to AB, and
make it equal to b. Join AC, and it will rep-

resent the value of Va2+ b2
; since AC2=AB2+BC2 (Geom.,

Bk. IV., Prob. 11).

Problem X. To construct the expression x—Vdl— b
2

.

This expression represents one of the sides of a right-angled

triangle, of which a represents the hypothenuse, and b the re-

maining side.

Draw an indefinite line AB ; at B draw BC perpendicular

to AB, and make it equal to b. With C as a centre, and a
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C radius equal to #, describe an arc of a circle

cutting AB in D ; then will BD represent

the expression Va2—b2
. For

BD2=DC2--BC2=a2-62
.

D\ B Whence RT)= Vdz-b2 =x.

Problem XL To construct the expression x—Va2
-\-b

2—c2
.

Put a2+ b2=d 2
, and construct d as in Prob. IX.; then we

shall have x= Vd2—

c

2
,

which may be constructed as in Prob. X.

In the same manner we may construct the expression

x—Vdz— b2+ c2—

d

2+e2—
, etc.

By methods similar to the preceding the following expres-

sions may be constructed

:

1. x—Va2+ ab. 4. x=Vd2— bc.

2. x=Vab+ cd. 5. x— a2 -\-ab.

labc a3

3. x=\J—. 0. *=-.

Problem XII. To construct the roots of thefour forms of
equations of the second degree (Alg., Art. 277).

In the equation x2±px— ±:q,

x2 and jpx represent surfaces (Prob. IY.)
; q must therefore rep-

resent a surface. We will suppose this surface transformed

into a square (7c
2
), and, to avoid misapprehension, will write the

general equation of the second degree

X2 ±pX=dtk2
.

First form. The first form x2+px=7c2 gives for x the two

p /p
2 p lp 2

values x= —-
}
+ \J ~r + ^2 an^ x= -^-y^ + 7c

2
.

Draw the line AB, and make it equal

to 7c. From B draw BC perpendicular to

pAB, and make it equal to ^r. Join A and

C ; then, as in Prob. IX., AC will repre-

sent the value of \ ~t + 7c
2

.
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With C as a centre, and CB as a radius, describe a circle

cutting AC in D, and AC produced in E. For the first value

of x the radical is positive, and is set off from A toward C

;

V
then —-: is set off from C to D, and AD, which equals

4"\e-l
represents the first value of x, measured from A to D.

For the second value of x we begin at E, and set off EC

equal to —£ ; we then set off the minus radical from C to A

;

then EA, measured from E to A, represents the second value

of x.

Secondform. The second form x2 —jjx= k2 gives for x the

two values

*=|+V^+£2 aiid*=|-.V?+*».

Fp
2

Construct as before AC=\ -^r+Jc2 \ then from C lay off CE

equal to"^, and the first value of x will be represented by AE,

measured from A to E.

p
From D lay off DC equal to%; then from C in a contrary

lp2

direction lay off CA equal to \J x+&2
, and the second value

of x will be represented by DA, measured from D to A.

Thirdform. The third form x2+px=—k2 gives for x the

two values

Draw an indefinite line FA, and from

p
any point, as A, set off a distance AB= ——

.

p VWe set off this line to the left, because % is * D̂ <ea
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negative. At B draw EC perpendicular to FA, and make it

equal to k. From C as a centre, with a radius equal to
-

^, de-

scribe an arc of a circle cutting the line FA in D and E. Join
/pi

CD, and we shall have ED or EE equal to yx—^2
-

The first value of x will be represented by —-AB+BE, which

is equal to —AE. The second value of x will be represented

by —AB—BD, which is equal to —AD; so that both of the

roots are negative, and are measured from A toward the left.

Fourth form. The fourth form #2—px=*z—h2 gives for x

the two values

4+Vf-^ a?a*=f-vf

a. :ir

Set off AB equal to ~ from A toward the

right. We set it off toward the right be-

^ cause g is positive. Then construct the rad-

ical part of the value of x as for the third form. To AB we
acid BD, which gives AD for the first value of x; and from
AB we subtract BE, which gives AE for the second value of x.

Both values are positive, and are measured from A toward the

right.

Equal roots. If the radius CE be taken equal to CB, that

p
is, if k is equal to tt, the arc described with the centre C will

not cut the line AF, but will touch it at the point B, the two
points D and E will unite, the radical part of the value of x be-

comes zero, and the two values of x become equal to each other.

Imaginary roots. If the radius of the circle described with

c the centre C be taken less than CB, it will not

meet the line AF. In this case I2
is numerically

jX-

—

B
greater than |- 3

and the radical part of the valueA
of x becomes imaginary
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8. Every algebraic expression admitting of geometrical con-

struction must have all its terms homogeneous (Alg., Art. 33)

;

that is, each term must be of the same degree. The degree of

any monomial expression is the number of its literal factors.

If, however, the expression have a literal divisor, its degree is

the number of literal factors in the numerator diminished by

the number in the denominator. Thus the expressions x,

ab abc „ . n t
, . . n a2b abed— , -j- are 01 the nrst decree ; the expressions x?\— ,

—-r- are
e * de ° '

x ' c ' ejt

of the second degree. In order that an algebraic expression

may admit of geometrical construction, each term must either

be of the first degree, and so represent a line ; or, secondly,

each must be of the second degree, and so represent a surface

;

or, thirdly, each must be of the third degree, and denote a solid,

since dissimilar geometrical magnitudes can neither be added

together nor subtracted from each other.

It may, however, happen that an expression really admitting

of geometrical construction appears to be not homogeneous

;

but this result arises from the circumstance that the geomet-

rical unit of length, having been represented in the calculation

by the numeral unit 1, disappears from all algebraic expres-

sions in which it is either a factor or a divisor. To render

these results homogeneous, it is only necessary to restore this

factor or divisor which represents unity.

Thus, suppose we have an equation of the form

• x= ab + c.

If we put I to represent the unit of measure for lines, we may
change it into the homogeneous equation

lx— ab-\-cl^

ab
or x= -j-+c,

which is easily constructed geometrically.

Suppose the expression to be constructed to be of the form

x- b-2c+3'
B
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Since one of tlie terms of the numerator is of the second de-

gree, each of the other terms of the numerator should be made
of the same degree, and each term in the denominator should

be made of the first degree ; so that, introducing the linear

unit Z, the expression to be constructed is

a2+ 3lb-2l2

x- b-2c+3l
*

The denominator of this fraction may be constructed by Prob.

III. If we represent the denominator by m, the expression

may be written

~~m m m*
each of which terms may be constructed by Prob. YI.

The following examples will show how an algebraic solution

of a problem may be converted into a geometrical solution.

Problem XIII. Having given the base and altitude of any

triangle, it is required tofind the side of the inscribed square

by a geometrical construction.

AVe have found, on page 13, the side of the inscribed square

to be equal to 7,7 / that is, it is a fourth proportional to

b+ h, b and h.

In order to construct this expression, produce the base AB
until BL is equal to the altitude h; through L draw LM par-

allel to BC, meeting CM drawn through

C parallel to AB. Join AM, and let it

meet BC in F; draw FE perpendicular

to AB, and it will be the required line.

~S x L Draw MN perpendicular to AL.

By similar triangles we have

AL:AB::LM:BF::MN:FE;
that is, b+ h;b::h:FE;

whence YE= 1
—

7 =x:
o+ h '

and therefore EF is equal to a side of the inscribed square.

Example 3, page 13, may be constructed in a similar manner

by laying off BL equal to nh.
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Problem XIV. It is required to draw a straight line tan-

gent to two given circles situated in the same plane.

Since the two circles are given both in extent and posi-

tion, we know their radii and the distance between their cen-

tres.

Let C, C be the centres of the two circles, CM, CM' their

radii. Denote the radius CM of the first circle by r, that of

the second CM7 by r\ and the distance between their centres

CC by a. Suppose that MM' is the required tangent
;
pro-

duce this line to meet CC produced in T, and denote the dis-

tance CT by x.

There are two cases

:

Case First When the tangent does not pass between (he

circles.

Draw the radii CM, CM' to

the points of tangency; the an-

gles CMT, CM'T will be right

angles, and the triangles CMT,
C'M'T will be similar. Hence
we shall have the proportion

CM:C'M'::CT:C'T,
r : r' \ : x : x—ei;

rx—ra—r'x,
ar

x-- w>

or

whence

and
r—r

from which we see that CT or x is a fourth proportional to

r—r', a and r.

To obtain x by a geometrical construction, through the cen-

tres C and C draw any two

parallel radii CNjC'N', on the

same side of CC. Through
N andW draw the line NK7

,

and produce it to meet CC
produced in T. CT will be

the line represented by x.

For through N' draw WB parallel to CT; then ND will
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represent r—r\ and NT) will be equal to a ; and by similar

DN:DN'::CN:CT,
r-r':a::r:GT;

triangles we have

or

whence CT:
ar

/p ___ /p'
-X.

Therefore a line drawn from T, tangent to one of the cir-

cles, will also be tangent to the other ; and, since two tangent

lines can be drawn from the point T, we see that this first case

of the proposed problem admits of two solutions.

Cor. If we suppose the radius r of the first circle to remain

constant, and the smaller radius r' to increase, the difference

r—

r

r
will diminish ; and, since the numerator ar remains con-

stant, the value of x will increase ; which shows that the nearer

the two circles approach to equality, the more distant is the

point of intersection of the tangent line with the line joining

the centres. When the two radii r and r
r become equal, the

denominator becomes zero, the value of x becomes infinite, and

the two tangents are parallel.

If we suppose r' to increase so as to become greater than r,

the value of x becomes negative, which shows that the point T
is on the left of the two circles.

Case Second. When the tangentpasses between the circles.

In this case, as in the other, the

lines CM and CM' are parallel;

hence the triangles CMT, C'M'T
are similar, and we have the pro-

portion

CMiC^M'riCTiC'T,
r : r

r

\ : x : a—x:or

whence
ar

X—
~ r+r''

To construct this expression, through

the centres C and C' draw any two

parallel radii GN", C'N', lying on dif-

ferent sides of CC; join the points

NN', sjid through T, where this line
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intersects CC, draw a line tangent to one of the circles. It

will be a tangent to the other.

For through W draw NT) parallel to CC 7

, and meeting CN
produced in D. From the similar triangles NCT, NDN' we
have the proportion

ND:DN'::NC:CT,
or r+ r':a::r :CT;

CLV
whence CT= —

—

y—x.r+r
Cor. The value of x is positive for all values of r and iff

when r=r\ the value of x reduces to ~.

If each circle is wholly exterior to the other, there may
therefore be two exterior tangents and two interior tangents,

in which case the problem admits oifoar solutions.

If the two circles touch each other externally, the two inte-

rior tangents unite in one, and the problem admits but three

solutions.

If the two circles cut each other, the interior tangents are

impossible, and the problem admits but two solutions.

If the two circles touch each other internally, the two exte-

rior tangents unite in one, and the problem admits but one

solution.

If one circle is wholly interior to the other, no tangent line

can be drawn, and no solution of the problem is possible.

The general values of x already found undergo changes cor-

responding to the changes here supposed in the position of the

two circles.

Problem XV. To divide a straight line in extreme and
mean ratio.

"We have found, in Example 4, page 14,

To construct the first value of %
y
make AB= a; at B erect

the perpendicular BC=^, and join AC.
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Then, as inProb. 9, page 21,

From C as a centre, with a

radius CB= ^, describe a cir-

cumference cutting AC in D and AC produced in E. From

AC take CD^, and we have

AD=AC-CD=\A2+|
2

-!
To construct the second value of x.

ct

From E set off EC towards tlie left equal to „, and from

V«2+xalso towards the left set off CA equal to \J a2+ -r. Then EA,

measured from E to A, will represent

'=-2-V«2+4-

With A as a centre, and AD as a radius, describe the arc

DF. The line AB will be divided in the required ratio at F,

and AF will be the greater part.

The second value of x~ —AE is numerically greater than

AB. It can not, then, form a part of AB, and is not an an-

swer to the question in the form here proposed.

Each value of x may, however, be regarded as the solution

of the more general problem, " Two points A and B being

given, to find, on the indefinite line that passes through them,

a third point F, such that the distance AF shall be a mean pro-

portional between the distances AB and BF." To this problem

there are evidently two solutions, F on the right of A being

one of the points, and F' on the left of A is the other.

9. From the preceding examples we perceive that the solu-

tion of a geometrical problem by the aid of Algebra consists

of three principal parts

:
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1st. To translate the problem into algebraic language, or to

reduce it to an equation.

2d. To solve the equation or equations.

3c/. To construct geometrically the algebraic expressions ob-

tained.

Frequently it becomes necessary to add a fourth part, whose

object is the discussion of the problem, or an examination of

all the circumstances relating to it.
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PART II
INDETERMINATE GEOMETRY.

SECTION I.

CO-OEDINATES OF A POINT.

10. The object of the second branch of Analytical Geometry

is to determine the algebraic equations by which known lines

and curves may be represented, and from these equations to

deduce their geometrical properties ; and conversely, having

given the equations, to determine the lines and curves which

they represent.

11. To determine theposition of apoint in a plane. The

position of a point in a plane may be denoted by means of its

distances from two given lines which intersect one another.

Thus, let AX,AY be two assumed straight

lines which intersect in any angle at A, and

let P be any point in the same plane ; then,

if we draw PB parallel to AY, and PC par-

allel to AX, the position of the point P will

-x be determined by means of the distances

PB and PC.

The two lines AX, AY, to which the position of the point P
is referred, are called axes, and their point of intersection, A, is

called the origin. The distance AB, or its equal CP, is called

the abscissa of the point P ; and BP, or its equal AC, is called

the ordinate of the same point. Hence the axis AX is called

the axis of abscissas, and AY is called the axis of ordinates.

The abscissa and ordinate of a point, when spoken of togeth-

er, are called the co-ordinates of the point, and the two axes

are called axes of co-ordinates, or co-ordinate axes.

A system of axes may be either rectangidar or oblique

;

that is, the angle YAX may be either a right angle or an

/
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oblique angle. Rectangular axes are ordinarily most conven-

ient, and will generally be employed in this treatise.

An abscissa is usually denoted by the letter x, and an ordi-

nate by the letter y / and hence the axis of abscissas is often

called the axis of x, and the axis of ordinates the axis of y.

The abscissa ofanypoint is its distancefrom the axis of
ordinates measured on a lineparallel to the axis of abscissas.

The ordinate ofanypoint is its distancefrom the axis of
abscissas measured on a line parallel to the axis of ordinates.

12. Equations of apoint. The position of a point may be

determined when its co-ordinates are known. For, suppose the

abscissa of the point P is equal to 5, and its ordinate is equal

to 4. Then, to determine the position of the

point P, from the origin A lay off on the axis

of abscissas a distance AB equal to 5 units

of length, and through B draw a line paral-

lel to the axis of ordinates. On this line lay

off a distance BP equal to 4 units of length,

and P will be the point required.

So, \ix— a and y— b, measure off AB equal to a units, and

draw BP parallel to AY, and equal to b units.

Hence, in order to determine the position of a point, we need

only have the two equations

x= a, y=b,

in which a and b are given. These equations are therefore

called the equations ofa point.

13. Signs of the co-ordinates. It is however necessary, in

order to determine the position of a point, that not only the

absolute values of a and b should be given, but also the signs of

these quantities. If the axes are produced through the origin

to X' and Y', it is obvious that the abscissas reckoned in the

direction AX' ought not to have the same sign as those reck-

oned in the opposite direction AX, nor should the ordinates

measured in the direction AY' have the same sign as those

B2
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measured in the opposite direction

AY ; for if there were no distinction

in this respect, the position of a point

as determined by its equations would

be ambiguous. Thus the equations of

the point P would equally belong to

the points P', P ;/

, P //;

,
provided the

absolute lengths of the co-ordinates of these points were equal

to those of P. This ambiguity is avoided by regarding the

co-ordinates which are measured in one direction &s>j)lus, and

those in the opposite direction as minus. It has been agreed

to regard those abscissas which fall on the right of the axis

YAY' as positive, and hence those which fall on the left must

be considered negative. So also it has been agreed to consider

those ordinates which are above the axis XAX' as positive, and

hence those which fall below it must be considered negative.

14. Equations of a point in each of thefour angles. The

angle YAX is called thefrst angle ; YAX' the second angle;

Y'AX' the third angle ; and YAX the fourth angle.

The following, therefore, are the equations of a point in each

of the four angles :

For the point P in the first angle, x= +a, y— +l>.

" P' " second angle, x= — a, y— + b.

" P" " third angle, x=—a,y=—h.
" P r//

" fourth angle, x=+a
y
y=— b.

If the point be situated on the axis AX, the equation y—

b

becomes y—0^ so that the equations

x— ±0, y—
denote a point in the axis of abscissas at the distance a from

the origin.

If the point be situated on the axis AY, the equation x~a
becomes x= 0, so that the equations

x= 0, y= ±b
denote a point on the axis of ordinates at the distance b from

the origin.
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If the point be common to both axes, that is, if it be at the

origin, its position will be denoted by the equations

x= 0j y=0.
The point P, whose co-ordinates are x, y, is often called the

point (x, y); thus a point for which x=a,y=b is called the

point (a, b). Hitherto the letters a and b have been supposed

to stand for positive numbers, but they may also be used to

represent negative numbers.

Ex. 1. Indicate by a figure the position of the point whose

equations are x— + 4, y= — 3.

Ex. 2. Indicate by a figure the position of the point whose

equations are a?= — 2, y— +7.
Ex. 3. Indicate by a figure the position of the point 0, —5.

Ex. 4. Indicate by a figure the position of the point —8, 0.

Ex. 5. Indicate by a figure the position of the point —3,-2.
Ex. 6. Draw a triangle the co-ordinates of wThose angular

points are 3,4; —3,-4; —1,0.

15. Polar co-ordinates. The position of a point may also

be denoted by means of the distance and direction of the pro-

posed point from a given point.

Thus, if A be a known point, and AX be

a known direction, the position of the point

P will be determined when we know the

distance AP, and the ano;le PAX.
Thus, if we denote the distance AP by ?',

and the angle PAX by 0, the position of P is determined if r

and are known.

The assumed point A is called the pole ; the distance of P
from A is called the radius vector ; the line AX is called the

initial line ; and the radius vector, together with its angle of

inclination to the initial line, are called the polar co-ordinates

of the point. The point whose polar co-ordinates are r and
is sometimes called the point r, 0.
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16. Unit for the measure of angles. The unit commonly
employed in Trigonometry for measuring angles is the nine-

tieth part of a right angle, called a degree / but a different unit

is sometimes more convenient. Since angles at the centre of

a circle are proportional to the arcs on which they stand, we
may employ the arc to measure the angle which it subtends,

and it is convenient to take as the unit of measure the arc

which is equal to the radius of the circle. Since the circum-

ference of a circle whose radius is unity is 27r, the measure of

four right angles wT
ill accordingly be 2tt ; the measure of one

right angle will be ^; the measure of an angle of 45° will be
7T

4> etc.

17. Negative values ofpolar co-ordinates. The position of

any point might be expressed by positive values of the polar

co-ordinates r and 0, since there is here no ambiguity corre-

sponding to that arising from the four angles of the figure in

Art. 13. It is, however, sometimes convenient to admit the use

of negative angles, and in this case an an-

gle XAP' is considered negative when it is

measured in the direction corresponding to

the mention of the hands of a watch ; and

an angle is considered positive when it is

measured in the opposite direction, as XAP.
The same direction may be represented either by a negative

angle or by a positive angle. Thus, if the angle XAP 7 be half

7T

a right angle, the direction AP' may be denoted either by — -j

or +\.
"We also sometimes admit negative as well as positive values

of the radius vector. Thus, suppose the co-ordinates of P to

7T 7T

be a and -r ; that is, let XAP=-j, and AV— a; if we produce

PA to P", making AP"= AP, then P" may be determined by
7T

saying that its co-ordinates arc — a and -r. The radius vector

J



CO-ORDINATES OF A POINT. 37

is considered positive when it is measured in the direction of

the extremity of the arc measuring the variable angle ; it is

considered negative when it is measured in the opposite direc-

tion.

Thus the co-ordinates

7T

j represent the point P.r and

— r and

—r and -

— r and

— r and

—r and —

7T

2

3ZH
4

7T

4

3*

P
6

.

Pr
P.

v,

p*

p7

P6

Thus the same point P is denoted either by the co-ordinates

r and -r« or — r and ^r, or —r and — 4~-
4' 4

'

4

Ex. 1. Indicate by a figure the position of the point whose

co-ordinates are a, 15°, where a~\ inch.

Ex. 2. Indicate by a figure the position of the point 2a, 40°.

Ex. 3. Indicate by a figure the position of the points

Q7T ^777 7T 7T— a, 45°; —a,— 135°; 3&,^r-; 5a, -V; 2a sin. -^^-.

18. Implicit equations of a point. The position of a point

may be determined not only explicitly by co-ordinates, but im-

plicitly by means of simultaneous equations which these co-

ordinates satisfy. For if we have two simultaneous equations

between two variables, we can find the values of these variables

by the methods of Algebra, and these values are the co-ordi-

nates of known points.

Ex. 1. Thus, suppose we have the equations

2x+ 3y= 12,

3x-2y=5,
we find x= 3, and y=2.
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In tliis and the following examples the pupil should draw

the figure representing the problem.

Ex. 2. Determine the point whose co-ordinates satisfy the

equations 5x—4y=9,
7x— 5y= 15.

Ans. a?=5, and 2/=4.

Ex. 3. Determine the point whose co-ordinates satisfy the

equations x y

a b~ >

x y n

o a

Ans. x—y———r.

Ex. 4. Determine the points whose co-ordinates satisfy the

equations x+y=4(x—y), )

Ans. (5, 3), and (-5, -3).

Ex. 5. Determine the points whose co-ordinates satisfy the

}

Ans. (5, 3), (-5, -3), (4</2, -/2), and (-4^/2, - V2).

equations x2+xy= 40,

1

19. To find the distance of any pointfrom the origin in

terms of the co-ordinates of thatpoint.

Y| Cfe^ First. Let the co-ordinates be rectan-

P gular.

We have AP2=

A

B2+BP2=

^

2+ y
1

;

therefore AP= -y/x*+ y
2

.

-^ -
1* Ex. 1. Determine the distance from the ori-

gin to the point whose co-ordinates are x=3a, y—^a.
Ans. AP=V9aa+16a*=5a.

Ex. 2. Determine the distance of the point —26, 3J, from
the origin. Ans. 1^13.

Ex. 3. Determine the distance from the origin to the point

a sin. /3, a cos./3. Ans. a.
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Ex. 4. Determine the distance of the point 5a, — 3$, from

the origin.

20. Case Second. When the co-ordinates are oblique.

From P draw PD perpendicular to AX;
then (Geom., B. IV., Prop. 13)

AP2=AB2+BP2+2AB m BD.
But by Trig., Art. 41,

R:cos.PBD::PB:BD. JT ~b"

Hence BD=:PB cos. PBD (radius being unity).

Therefore AP2=AB2+BP2+ 2AB . PB cos. PBD.
But PBD=YAX, which we will represent by w.

Hence AP= (x2+y2+ 2xy cos. w) 2
.

In the following examples we will suppose the axes to be

inclined at an angle of 60°.

Ex. 1. Determine the distance from the origin to the point

3a,±a. Am AP= (9a2+ 16a2+ 24^2 xi)^:=aV37.
Ex. 2. Determine the distance from the origin to the point

-25,35. Arts. AP=5y7.
Ex. 3. Determine the distance from the origin to the point

a sin. ft a cos. 0. ^. a(l+i sin. 2/3)*

' Note. Sin. 2A=2 sin. A cos.A (Trig., Art. 73).

Ex. 4. Determine the distance from the origin to the point

5a, —3a.

21. To find the distance between two givenpoints.

Case First. Let the axes be rectangular.

Let P and Q be the two points, and repre-

sent the co-ordinates of P by xv yv and those

of Q by xv yr
Draw PR parallel to the axis of x, cutting a. m: n

QN in E.

Then PQ2=PE2+EQ2
.

But PR=MN=AN--AM=tf
2-^,

and QE=Q^_PM=2/
2
-?/r

R
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Therefore PQ2= (x
2-xtf+ (y2-yj*,

and PQ= V{x2-xtf+ (y2-ytf.
Ex. 1. Determine the distance between the point 3, 4, and

the point 4, 3. Ans. PQ2= (3-4)2+(4-3)2
.\ PQ= V2.

Ex. 2. Determine the distance between the point —3,4, and

the point 4, —3. Ans. 7V%-
Ex. 3. Determine the distance between the point 2, 2, and

the point —2,-2. Ans. 4-/2.

Ex. 4. Determine the distance between the point 2a, 0, and

the point 0, —2a. Ans. 2a^/2.

Ex. 5. Determine the distance between the point — 2a, 2a,

and the point 4$, —6a.

22. Case Second. Let the axes be inclined at

an angle w.

Then, as in Art. 20,

A ra & * PQ2=PK2+KQ2
-f2PK.KQ cos.YAX,

or PQ= V(x2
-x

l)
2+ (y2

--y
l)

2+ 2(x
2
-x

l)(y2-y1)
cos. w.

Ex. 1. Determine the distance between the point 0, 3, and

the point 4, 0.

Ans. PQ2=42+32-2.4.3 cos. w=25-24 cos. *>,

and PQ = V25-24 cos. w.

Ex, 2. Determine the distance between the point 0, 3, and

the point -4, 0. Ans. V25+ 24 cos. w.

Ex. 3. Determine the distance between the point 2, —2, and

the point -2, 2.
An*. 8 fa*

Note. 2 sin. 2A= 1- cos. 2A (Trig., Art. 74).

Ex. 4. Determine the distance between the point a, 0, and

the point 0, a. A ~ . w
1 ' Ans. 2a sin. -~-

23. Case Third. Let the co-ordinates be polar.

P Let P and Q be the two given points ; repre-

>q sent AP by rv and AQ by r
2 ; also PAX by V

"p and QAX by
2

.

From P draw PD perpendicular to AQ.
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By Geom., Bk. IV., Prop. 12,

PQ2=AP2+AQ2-2AQ x AD.
But AD=AP cos. PAQ (radius being unity).

Hence PQ2=AP2+AQ2-2AP x AQ x cos. PAQ
=r 2+r 2_2r

x
r
2 , cos. (0,-02),

and PQ= Vr
x

2+r
2
2— 2r

x
r
2 , cos. (01

— 9
2).

Ex. 1. Determine the distance between the point 2a, 30°, and

the point a, 60°. Ans. PQ2=4&2+a2-4a2 x £V3,

and PQ =aVo—2-/3.

Ex. 2. Determine the distance between the point a, 0°, and

the point b, 30°. Ans. FQ2=a2+b2—2ab x £V3,
and PQ = Va2+b2-abV'3.

Ex. 3. Determine the distance between the point a, 0, and

the point — a, — 0.

Ans. FQ2=a2+a2+ 2a2 cos. 20=2a2(l+ cos. 20),

and PQ = 2a cos. 0.

Note. 2 cos. 2A= 1+ cos. 2A (Trig., Art. 74).

Ex. 4. Determine the distance between the point a, 0, and

the point a,—Q. Ans. 2a sin. 0.

24. To find the co-ordinates of the point which bisects the

straight linejoining two givenpoints.

Let D be the point required, AN, DN its co-ordinates, and

let DN cut BF in E.

Then

AN"=AL+LN=»AL+BE=AL+iBF

that is, AN=«
l
+^=S=5±S.

A L

In like manner, DN= 2/1+2/2

2

Ex. 1. Determine the co-ordinates of the point of bisection

of the line joining the point — 1, 1, with the point 3, —5.

Ans. x—\, y——2.
Ex. 2. Determine the co-ordinates of the point of bisection

of the line joining the point 3, —3, with the point 5,-5.
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25. To find the area of a triangle whose angular points

are given.

Let BCD be the triangle, and let the co-

ordinates of B, C, D be x
x yv x

2 ?/2 , x3 y3
re-

spectively.

The area BCD
l m n A =BCML+CDNM-BDNL.

But BCML=iLM(BL+CM)=i(a?
a
-a

1)(y2+y1).

So also CDNM

=

i(x3
- a?2)(y3+y2\

and BDKL=£(#
3
—a^Xj^+jO.

Therefore the area BCD=

=XfWs+ X&1+ X^2-X&2-^3-^l)»

Ex. 1. Determine the area of the triangle whose angular

points are 3, 4 ; — 3, — 4 ; 0, 4. Ans. 12.

Ex. 2. Determine the area of the triangle whose angular

points are 0,0; 1,2; 2,1. 3
jL±.ns, q.

Ex. 3. Determine the area of the triangle whose angular

points are a, ; —a, ; 0, b. Ans. ab.

Ex. 4. Determine the area of the triangle whose angular

points are 1,1; —1,2; —1,1.

26. To convert the rectangular co-ordinates ofa point into

polar co-ordinates, and vice versa.

Let x and y denote the co-ordinates of P referred to the rect-

T angular axes AX and AY. Also, let r and

denote the polar co-ordinates of P, the pole

being at the origin A, andAX being the initial

line. Draw PD perpendicular to AX. Then,

by Trig., Art. 41,

AD=AP cos. PAD, or x— r cos. 0;

also PD=AP sin. PAD, or y— r sin. 0,

which equations enable us to deduce the rectangular co-ordi-

nates of a point from the polar co-ordinates.
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Again, AD 2
-fPD2=AP2

,
or tf + 7f= r^

and AD : E : : PD : tang. PAD, or -= tang. 0,

which equations enable us to deduce the polar co-ordinates of

a point from the rectangular co-ordinates.

Ex. 1. Find the polar co-ordinates of the point whose rect-

angular co-ordinates are 8=1, y=l, and indicate the point by

a figure. Ans. r= i/2, 0=45°.

Ex. 2. Find the polar co-ordinates of the points whose rect-

• angular co-ordinates are

(1) *=-l, y= + 2.

(2) *=-!, y=-a.
(3) x=+l, y=-2.

Ex. 3. Find the rectangular co-ordinates of the point whose

7T

polar co-ordinates are ^=3, 0=o- A 3 3 ,_
rf J.7W.«=2,y=2V3.

Ex. 4. Find the rectangular co-ordinates of the points whose

polar co-ordinates are

(l)r=+3, 0=-|

(2)r=-3, 0=+|.

(3) r=-3, 0=-f.
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SECTION II.

THE STKAIGHT LINE.

28. Definition. The equation of a line is the equation

which expresses the relation between the two co-ordinates of
everypoint of that line.

Hence, if any point be taken upon the line, and the values

of x and y for that point be substituted in the equation, the

equation will be satisfied ; and conversely, if the co-ordinates

of any point whatever of the plane satisfy the equation of a

line, that point will be on the line.

29. Tofind the equation to a straight line referred to rect-

angular axes.

Let A be the origin of co-ordinates,

AX and AY be rectangular axes, and
let PC be any straight line whose
equation is required to be determined.

Take any point P in the given line,

and draw PB parallel to AY; then

will PB be the ordinate and AB the abscissa of the point P.

From A draw AD parallel to CP, meeting the line BP in D.
Let AB=a?,

BP=y,
tang. PEX or DAX=m,

and AC or DP =c.

Then, by Trigonometry, Theorem IL, Art. 42,

AB : BD : : radius : tang. DAX

;

that is, x : BD : : 1 : m,
or T>D=nix.

But BP=BD+DP;
that is, y= mx+c.
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Hence the equation to a straight line referred to rectangular

axes is y—mx-\-c;

where x and y are the co-ordinates of any point of the line, m
represents the tangent of the angle which the line makes with

the axis of abscissas, and c the distance from the origin at

which it intersects the axis of ordinates.

30. Signs qfm and c.

If the line CP cuts the axis of ordi-

nates below the origin, then c or AC will

be negative.

In that case, BP=BD-DP

;

or, y=mx— c.

The ano-le which the line makes with

the axis of abscissas is supposed to be measured from the axis

XX around the circle by the left. If the

line CP is directed downward toward the

right, as in the annexed figure, the line

makes either an obtuse angle, CEX, with

the axis of abscissas, or the negative acute

angle CEA, the tangent of either of which

angles is negative (Trig., Art, 69).

In this case we have

AB : BD : : radius : tang. DAX,
or x : BD : : 1 : m.

The tangent of DAX being negative, BD is also negative.

But BP=-BD+DP,
and the equation becomes y— —mx+c,
where it must be observed that the minus sign applies only to

the quantity m, and not to x, for the sign of x depends upon its

direction from the origin A.

If the line CP is directed downward toward

the right, and cuts the axis of ordinates below

the origin, then c is negative as well as m; and

since BP= —BD—DP, the equation becomes

y——nix— c.
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It is to be remembered that the symbols x, y, m, and c may
stand for negative numbers, and therefore the single equation

y=zmx+ c

may represent any line whatever.

31. Four different positions of a line. There may, there-

fore, be four positions of the proposed line, and these positions

are indicated by the signs of m and c in the general equation.

1. Let the line cut the axis of X to the

left of the origin, and the axis of Y above

it ; then m and c are both positive, and

the equation is

y—-\-mx+c.

2. If the line cuts the axis of X to the

right of the origin, and the axis of Y be-

low it, then m will still be positive, but

c will be negative, and the equation be-

comes y= + w*#

—

c-

3. If the line cuts the axis of X to the

right of the origin, and the axis of Y
above it, then m becomes negative and c

positive. In this case, therefore, the equa-

tion is y=—mx+ c.

4. If the line cuts the axis of X to the

left of the origin, and the axis of Y below

it, then both m and c will be negative, so

that the equation becomes

y— —mx—c.
If we suppose the straight line to pass

through the origin A, then c will become

zero, and the general equation becomes

y^jnx,

which is the equation of a straight line passing through the

A
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32. Direction ofa line indicated. It will be seen that tlie

direction of the proposed line is indicated by the symbol m.

If m is very small and positive, the line whose

equation is y—mx takes the position AP,
near the axis AX. As m increases the line

changes its position, and when m= l the line

makes an angle of 45° with AX. As the

value of m increases the line approaches AY, and coincides

with it when m becomes infinite.

If m is negative and very large, the line assumes the position

AP", and as m decreases the line moves toward AX', and

when m——\ the line bisects the angle YAX'. When m be-

comes zero, the line coincides again with the axis of abscissas.

So, also, if the point P is supposed to travel round A through

the third and fourth quadrants, the value of m will be positive

in the third quadrant and negative in the fourth.

Ex. 1. Let it be required to draw the line whose equation is

y= 2x+4:.

Draw the co-ordinate axes AX, AY.
Kow if in this equation we suppose x=0,
the value of y will designate the point in

which the line intersects the axis of ordi-

nates, for this is the only point of the line

whose abscissa is zero. This supposition

will give y— ^-

Hence, if we take AB= 4, B will be one point of the required

line.

Again, if in the proposed equation we suppose y~0
y
the

value of x which is found from the equation will designate

the point in which the line intersects the axis of abscissas, for

that is the only point of the line whose ordinate is zero. This

supposition will give

2a?=-4,
or x=—2.

Hence, if we lay off from A toward the left a distance AC
= 2, C will be a second point of the proposed line. Draw the
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straight line BC, and produce it indefinitely both ways ; it will

be the line whose equation is y—2x+4^.

The student should regard every algebraic equation in this

treatise as expressing some geometrical truth, and he should

accustom himself to express these truths in appropriate geo-

metrical language. Thus the equation y— 2x+4 expresses the

truth that the ordinate of a certain straight line is equal to

twice the corresponding abscissa, increased byfour.

So also the general equation of a straight line, y=mx + c,

expresses the truth that the ordinate of any straight line is

equal to some multiple of the corresponding abscissa, in-

creased by a constant number.

33. Any number ofpoints ofa line determined. When the

equation of a line is given, we may, if desired, determine any

number of points of the line by assuming particular values for

x, and computing the corresponding values of y.

Thus, if in the equation ?/=2^+4 we suppose

x— 1, we find y— 6. x—— 1, we find y= 2.

y== 8. a=-2, " y=z 0.

y=10. a?=-3, " y=-2.
?/=12, etc. a?=— 4, " y~— 4, etc.

In order to represent all these values by a

figure, set off on the axis of abscissas lines

equal to 1, 2, 3, etc., both to the right and left

of A ; then erect a perpendicular from each

of these points, and make it equal to the cor-

responding value of y, setting it off above

AX if the ordinate be positive, but below

AX if negative. The required line must

pass through all the points thus determined.

34. Variables and constants. In the equation y=mx+c,
m and c remain unchanged so long as we consider the same

Straight line ; they are therefore called constant quantities, or

constants. But x and y may have an indefinite number of
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values, since we may ascribe to one of them, as x, any value

we please, and find from the equation the corresponding value

of y. x and y are therefore called variable quantities, or vari-

ables.

35. Meaning of the equation ofa line. The equation of a

line may be regarded as a statement of some geometrical prop-

osition respecting that line.

Thus the equation

y=2x+ l0

may be regarded as the algebraic statement of the proposition,

the ordinate of a certain line is always equal to twice its cor-

responding abscissa increased by ten.

36. Equation to a lineparcdlel to one ofthe axes. If in the

equation y=mx-\-c we suppose m=0, the line will be parallel

to the axis of X, and the equation becomes

y=0.x+c,
or y— c.

This is then the equation of a line parallel to the axis of X.

If c is positive, the line is above the axis of X ; if negative, it

is below it.

So also x— dta is the equation to a straight line parallel to

the axis of Y.

Examples. Construct the lines of which the following are

the equations

:

l.y=2x+3. 4:.y=—2x—5. 7. y=5.
2. y=3x-7. 5. y=3x. 8. y=-2.
3.y=—x+2. 6. y—x. 9.y=—x.

37. Every equation of thefirst degree containing two vari-

ables represents a straight line.

Every equation of the first degree containing two variables

can be reduced to the form

Ax+By+C= Q,

in which A, B, and C may be positive or negative. We shall

C
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now prove that every equation of this form represents a straight

line.

Y In this equation put y=0, and we have

j<g. x=—-r, which represents the point D
where the line intersects the axis of X.

C
Again, put x=0

y
and we have y=z—^

which represents the point E where the line intersects the axis

of Y. "We have thus determined two points in the line which

this equation represents.

Let P be any other point of the line or curve represented by

the given equation. "We are to prove that P is on the straight

line passing through the points D and E.

Since P is supposed to be on the line represented by the

given equation, its co-ordinates must satisfy this equation ; and

representing its co-ordinates by x and y, we shall have

Ax+By+C=0,

whence y= tt- =PR.

C C C -C-Aa> .. . ._

JSow ~T : ~t5 :: — a"""^ : ^ > identically.

But these several terms are equal to those of the proportion

AD:AE::DR:PR;
that is, PR is a fourth proportional to the three lines AD, AE,
and DP; that is, P lies on the straight line joining D and E,

and the equation Ax+By+C— represents that straight line.

If either A, B, or C be negative, the same demonstration will

apply with a slight change of the figure.

This equation always represents some straight line, and may
be made to represent any one by giving appropriate values to

A, B, and C.

If in this equation A= 0, then the line is parallel to the axis

of x ; if B= 0, the line is parallel to the axis of y ; if C= 0,

the line passes through the origin.

Exam/pies. Draw the straight lines represented by the fol-

lowing equations :
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l.x+y+10 = 0.

2. a?+y=10.

3. x+y=0.

4. 2x+3y=0.

5. 4a+3y=l.

6. 2y= 3or— 5.

7. ?/=4— #.

8. 2^=?/+7.

9 -4-^-1J'2+ 3 '

10.y-3= 2(a>-2).

11. #= 2y.

12. X= 4:.

13.y=2.

14. 4#—3y=l.

15. #—2y=— 4.

38. 76> ^tm? tfAg equation to a straight line which passes

through a given point.

When a point P is not completely determined, its co-ordi-

nates are denoted by the variables x and y ; but when the po-

sition of a point is completely known, the co-ordinates are gen-

erally denoted by the letters a, b, or by x
y yy

with suffixes, as xv

Vv xv V2 5 or ^ x and V with accents, as x', y\ x", y
;/

, etc.

Let PCE be the straight line, C the given

point whose co-ordinates are xv yv and P
any point of the line whose co-ordinates are

x and y. Draw the ordinates CL, PM ; also

draw CD parallel to AX.
Now PD=y-y

1 ,

and CD=#— xy
But CD : PD : : radius : tang. PCD.

Hence
CD"

tang. PCD, which we will represent by m.

' or y-y^mix-x,),
VU ~~~tA/->

m.That is,

which is the equation of a straight line passing through a given

point P.

Since the coefficient m
y
which fixes the direction of the line,

is not determined, there may be an infinite number of straight

lines drawn through a given point. This is also apparent from

the figure. •

39. Line passing through a given point and parallel to a
given line. If it be required that the line shall pass through

a given point, and make a given angle with the axis of X, then
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m becomes a known quantity, and if we put m' for the tangent

of the given angle we shall have

which is the equation of a straight line passing through a giv-

en point, and making a given angle with the axis of X.

Ex. 1. Draw a line through the point wThose abscissa is 5 and

ordinate 3, making an angle with the axis of abscissas whose

tangent is equal to 2, and give the equation of the line.

Ans. The equation is y— 2#+ 7= 0.

Ex. 2. Find the equation to the straight line which passes

through the point (a, &), and makes an angle of 30° with the

axis of X. Ans. x—a— (y—b)-\/3.

Ex. 3. Find the equation to the line which passes through

the point (4, 4), and makes an angle of 45° with the axis of X.

40. To find the equation to the straight line which jxesses

through two given points.

Let B and C be the two given points,

the co-ordinates of B being x
x
and yv and

the co-ordinates of C being x
2
and y2

.

Then, since the general equation for ev-

ery point in the required line is

y=mx+ c, (1)

it follows that when the variable abscissa x becomes xv then y
will become y l

; hence
•

yl
=mx

1
+ c. (2)

Also, when the variable abscissa x becomes x
2 , then y be-

comes ?/2 , and hence y2
=mx

2
+c. (3)

By combining these three equations we may eliminate m
and <\

If we subtract equation (2) from equation (1), we obtain

y—ftsf^B-q). (4)

Also, if we subtract equation (3) from equation (2), we ob-

tain yi-Vz=m^\~x^
from which we iind m————

.
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Substituting this value of m in equation (4), we liavc

y-Vi=,
V\-y*(x-x

x\

which is the equation of the line passing through the two given

points B and C.

It is evident from the figure that ——~ denotes the tangent

of the angle BCD or BEX.
^

l
~^

2

If the origin be one of the proposed points (#2, y2),
then x

2

= and y2
— 0, and the equation becomes

y~-
x,
-x,

which is the equation to a straight line passing through the or-

igin and through a given point.

Ex. 1. Find the equation to the straight line which passes

through the two points whose co-ordinat.es are a?,=7, ^==4,
and #

2
=: 5, y2=3, and determine the angle which it makes

with the axis of abscissas.

Ex. 2. Find the equation to the straight line which passes

through the two points x
l
= 2, ^ = 3, and x

2
— k, y2

z=1 5-

Ex. 3. Find the equations to the straight lines which pass

through the following pairs of points :

(1) *i=3,y,=4; and *2=1J Vi=%
(2) a?,= 5, y1

= 6

;

u ^2=- 1
,

9J2= -

(3) ^X^ 1
, Vx= 2 '>

a
<V=2,y2

=—*•

(4) *i=±>yi=-2;
u »

2
=-3, y2

=-5
(5) ^,=3,Vt=-2;

a
«r=0> 2/2

=°-

(6) aJi=2>yi=5 >

u
a;
2= 5 y2

=-^
(7) »i=°>yi=i; a *2=l>y2=-l-
(8) xi=°> Vi=—«;

a *2=0,y2
=—*.

(9) x
x
=a,y,=b; (( a"

2=^2/2
=-^

(10) a?|=a, y1=_J;
u

*V=—<*,y2=-&

41. Definition. The distance from the origin to the point

where a line intersects the axis of X is called the intercept on

the axis of X ; and the distance from the origin to the point



54 ANALYTICAL GEOMETRY.

where a line intersects the axis of Y is call-

ed the intercept on the axis of Y.

Thus, in the annexed figure, AB and AC
are the intercepts of the line PC on the two

axes.

42. Tofind the equation to a straight line in terms of its

intercepts on the two axes.

Let B and C be the points where the

straight line meets the axes of y and x

respectively. Suppose AC=;<2, and AB
= b. Let P be any point in the line, and

:

^T\X let x and y be its co-ordinates. Draw
PD parallel to AY. Then, by similar

triangles, v/e have

that is,

whence

AB:DP
b:y

AC:DC;
a\a— x,

x y .

which is the equation to a straight line in terms of its inter-

cepts a and b.

Ex. 1. Find the equation to a straight line which cuts off in-

tercepts on the axes of x and y equal to 3 and —5 respectively.

Ex. 2. Find the equation to a straight line which cuts off the

intercepts —4 and 2.

43. To find the angle included between two given straight

lines.

Let BC and DE be any two lines in-

tersecting each other in P. Let the

equation to the line BC be

y-m
x
x+cv

and the equation to the line DE be

y=m
2
x+c

2 ;

then m
x
will be the tangent of the angle BCX, and m

2
the tan-

gent of the angle DEX. Now, because PCX is the exterior
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angle of the triangle PEC, it is equal to the sum of the angles

CPE and PEC ; that is, the angle EPC is equal to the differ-

ence of the angles PCX and PEX, or

EPC=PCX-PEX,
whence tang. EPC^tang. (PCX-PEX),
which, by Trig., Art. 77,

• tang. PCX-tang. PEX
" 1+ tang.PCX x tang.PEX
m

1
—m

2

'1+mjnJ
le tangent <

two riven lines.

which denotes the tangent of the angle included between the

to*

44. To determine the co-ordinates ofthejpoint of intersec-

tion of two given straight lines.

Let the equation to one line be

y=m
x
x+cv (1)

and the equation to the other

y=m
2
x+c

2
. (2)

Since the co-ordinates of every point on a line must satisfy

its equation, the co-ordinates of the point through which both

the lines pass will satisfy both equations ; we must, therefore,

find the values of x and y from (1) and (2) regarded as simul-

taneous equations. We thus obtain

x=——S and y=~1—-—

—

Km
2—mx

* m
2
—m

x

y

which are the co-ordinates of the point of intersection of the

two lines.

Ex.1. Find the angle included between the lines x+y=l
and y=x+2; also find the co-ordinates of the point of inter-

section. A ^ 1 3
Ana. 90°, x=-^y=^.

Ex. 2. Find the angle between the lines x+3y=l and x—2y
= 1 ; also the co-ordinates of the point of intersection.

Ans. 45°, x=l, y=0.
Ex.3. Find the angle between the lines x+y\/3= and



5G ANALYTICAL GEOMETEY.

x—y<\/ 3= 2; also the co-ordinates of the point of intersec-

Ans. 60°, x=l, y=—-%-.

Ex. 4. Find the angle between the lines oy— #=:0 and 2a?+ 2/

=1 ; also the co-ordinates of the point of intersection.

Ans. 81° 52', »=£, y=|.
Ex. 5. Find the angle between the lines 3y— 2a?+l= and

3,i'—y=0; also the co-ordinates of the point of intersection.

Ex. 6. Find the angle between the lines x+y— 3= and

pj-fy=2; also the co-ordinates of the point of intersection.

45. To find the equation to the straight line which passes

through a given point, and is perpendicular to a given

straight line.

Let x
xyx

be the co-ordinates of the given point, and

y—mx+c
the equation to the given line. The form of the equation to a

line through {x
xy^ (Art 3S) is

The tangent of the angle between the two lines is (Art. 43)

1 +mm^
If the angle of intersection of the two lines be a right angle,

its tangent must be infinite, and the denominator l + ?n?n
l
must

become zero, so that we must have

1
m,= .

1 VI

Hence the required equation is

2/-?/i=--(<*-*i),

which is the equation to the straight line passing through the

point (x
xyd) Mid perpendicular to the line y— mx-\-c.

46. Condition ofperpendicularity. We conclude from the

x
last article that V=——+0,J m l
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represents a line perpendicular to the line

y=mx+ c.

The condition by which two straight lines are shown to be

at right angles to each other may also be determined as follows

:

Let BC be a given line, and let tang.

BCX=?n.
Let DE be perpendicular to BC, and

let tang. DlEX=7n
l

; then

tang. DEX=-tang. DEA,
= — cotang. BCA;

that is, m
1
=—-. (Trig., Art. 28.)

lib

Hence we see that when two lines areperpendicular to each

other', the tangents of the angles vjhich they make vnth either

axis are the reciprocals ofeach other^ and have contrary signs.

Ex. 1. Find the equation to the line which passes through

the origin, and is perpendicular to the line x+y—2.
Ans. y—x.

Ex. 2. Find the equation to the line which passes through

the point %
1
= 2

y y1
= —4:, and is perpendicular to the line 3y

+ 2x— 1= 0. Ans. 2y=3x-14:.

Ex. 3. Find the equation to the line which passes through

the point (8, 4), and is perpendicular to the line w^hose equation

is y=2x— 16.

Ex. 4. Find the equation to the line which passes through

the point (—1, 3), and is perpendicular to the line 3#+4y+2
= 0.

47. To find the perpendicular distance of a given point

from a given straight line.

Let P be the given point, whose co-ordi-

nates are x
xyv and letBC be the given straight

line whose equation is

y—mx+ c.

From P draw PD perpendicular to BC,
and PM perpendicular to AX, cutting BC in

C2
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E. Now, since the above equation applies to every point of

BC, it must apply to E ; that is,

E^l=mx
l
+ c.

The perpendicular - PD=PE sin. PED.
But PE=PM-ME=y

1
-?waj

1
-(?,

and sin. PED= sin. CEM= cos. ECM= ^t^tt=
sec. ECM

1. 1

Vl + (tang. ECM)2 Vl+m2

Therefore PD^^l!?
Vl +m2 '

which equation expresses the distance from the given point

(#1^1 ) *° ^e given straight line.

If the point P be at the origin, then x
x
= 0, yx

— 0, and we

have PD=
~ C

,

Vl+ ?n*

which equation expresses the distance of the proposed line

from the origin.

Ex. 1. Find the perpendicular distance of the point 2, 3 from

the line x~\-y—l. Ans. 2-\/2-

Ex. 2. Find the distance of the point — 1, 3 from the line

5x+fy+2= 0. . 11
Ans. -=-•

5

Ex. 3. Find the distance of the point 0, 1 from the line x—3y
=1. , 2^/10

Ans. —=—

•

5

Ex. 4. Find the distance of the point 3, from the line

:+tj=1. Ans,2-3—
VI3*

Ex. 5. Find the distance of the point 1,-2 from the line

x+y— 3= 0. Ans. 2^/2.

Ex. 6. Find the distance of the origin of co-ordinates from

x i/ G
the line ^+^—1. Ans. -rn*
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Ex. 7. Find the distance of the point 3, — 5 from the line

2x-§y+ 7=0.

Ex. 8. Find the distance of the point 8, 4 from the line y—2x
-16.

48. To find the equation to a straight line referred to ob-

lique axes.

Let A be the origin of co-ordinates ; let

AX, AY be the oblique axes, and let PC
be any straight line whose equation is re-

quired to be determined. Take any point

P in the given line, and draw PB parallel

to AY ; then will PB be the ordinate and £ a~

AB the abscissa of the point P. Through the origin draw a

line AD parallel to CP, meeting the line BP in D.

Denote the inclination of the axes by w, and the angle DAX
by a. Since PB is parallel to AY, the angle ADB is equal to

DAY; that is, equal to w—a.
Let x, y be the co-ordinates of P, and represent AC or DP

by c.

Then, by Trig., Art 49,

BD : AB : : sin. a : sin. (w— a).

Hence BD=—

—

j—'-—r.
Sin. (w— a)

But BP=BD+DP.
__ x sin. a
Hence ?/=-

—

7 -+<?_J sin. (w— a)
?

which is the equation to a straight line referred to oblique

axes.

If we put m for -=

—

-A r. the equation becomesr sin. (a)—ay
u

y=mx+c,
which is of the same form as the equation referred to rectan-

gular axes, Art. 29. The meaning of c is the same as in Art.

29 ; but the factor m denotes the ratio of the sine of the incli-

nation of the line to the axis of X, to the sine of its inclination
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'to the axis o£ Y. When the axes are at right angles to each

other, m becomes the tangent of a.

49. To find thepolar equation to a straight line.

Let BC be any straight line, and P any

point in it. Let A be the pole, AX the in-

itial line, and let AD be drawn from A
perpendicular to BC. Let AD =p, the an-

gle DAX=a, and let the polar co-ordinates

of P be r, 9 ; then we shall have

AD=APcos.PAD;
that is, p=r cos. (0— a),

or r—jp sec. (0— a),

which is the polar equation to a straight line.

If AD be taken for the initial line, then a=0, and the equa-

'

tion becomes r=p sec. 0,

which is the equation to a right line perpendicular to the ini-

tial line.

To trace a right line by its polar equation, we find its inter-

cept on the initial line by making 6= 0. Then from the pole

as a centre, with a radius equal top, describe a circle, and

draw a tangent to this circle from the point first determined

;

this tangent line will be the line required.

50. To find the polar equation to a line passing through

thepole.

Let x and y denote the co-ordinates of P re-

ferred to rectangular axes ; also let r and 9 de-

note the polar co-ordinates of P, the pole being

d x
at the origin A, and AX being the initial line.

Then, as in Art. 26, x=r cos. 0,

and y= r sin. 9.

Substituting these values in the equation

y=?7ix,

we have r sin. 9=mr cos. 9
;

therefore tang. =m /
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that is, 0=a constant,

which is the polar equation to a straight line passing through

the pole.

Examples. Draw the straight lines represented by the equa-

tions

l.rcosYfl-jW. 4. 0=

2. rcos.(0—
J)

=4.

3.rcosYo-|J=8.

7T

3'

5. e=|
6. 0=0.

51. The following examples are designed to show how the

preceding principles may be applied to the solution of geomet-

rical problems.

To determine whether the perpendiculars drawn from the

vertices ofa triangle to the opposite sides meet in a point.

Let ABC be any triangle, and let AE, BF, CD
be perpendiculars from A, B, and C upon the op-

posite sides.

Let A be the origin of co-ordinates ; let AB be

the axis of abscissas, and AY, perpendicular to -^ » "~B

AB, the axis of ordinates. Let the co-ordinates of C be x
lyv

and those of B be a?
2 , 0.

Now if the abscissa of the point where AE and BF intersect

is equal to AD, the intersection of these lines must be on CD.
Since each of these lines passes through a given point and is

perpendicular to a given line, its equation will be given by Art.

45 ; but we must first find the equations to the lines AC, BC,

to which they are perpendicular.

Since AC passes through the origin and the given point C,

its equation is (Art. 40)

y=*fi (i)

and since BF passes through a given point B(a?
2 , 0), and is

perpendicular to (1), its equation is (Art. 45)
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x

y=-v@-**)- (2)

Also, since BC passes through, the point B(#
2 , 0) and the

point C^yJ, its equation is (Art. 40)

1 2

and since AE passes through the origin (0, 0), and is perpendic-

ular to (3), its equation is

J
Vi

W
At the point where (2) and (4) intersect, their ordinates must

be identical. Hence we may equate their values, and we have

X^ X^ tZ/g

2/i

2
Vi '

whence x=x
1 ;

that is, x, the abscissa of the intersection of BF, AE, is equal

to xv the abscissa of the point C ; hence the perpendicular CD
passes through that intersection, and the three perpendiculars

meet in a point.

52. To determine whether the threeperpendiculars through

the middlepoints of the sides ofa triansgle meet in a point,

y £ Let ABO be any triangle, and let D, E, F be the

middle points of its sides. Let P be the point

t^^e where two of the perpendiculars EP, FP meet

;

now if the abscissa of P is equal to AD, the inter-

B section of the lines EP, FP must be in the per-

pendicular drawn from D.

Represent the point C by (a?^), and the point B by (#2 , 0).

x u
The co-ordinates of F are -^, ^ (Art. 24), and the co-ordi-

nates of E are x,+x , y,

Now the equation to AC, passing through the origin and the

pointy, is |^ (1)
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and the equation to FP, which passes through F( -~
y
~ V and

is perpendicular to (1), is ^ '

The equation to BC, passing through the point (x
2 , 0) and (a?^),

is y=-^-{x-x
2), (3)

(CC -4- CC 7/ \
1

q
2

,
^L

At the point where (2) and (4) intersect, their ordinates must

he identical ; and equating their values, we have

1/ 1 l 1 2l 1

""

> 2 \

which gives x—~\

that is, #, the abscissa of the intersection of EP and FP, is equal

03

to ~, which is the abscissa of the point D ; hence the perpen-

dicular from D passes through that intersection, and the three

perpendiculars meet in a point.
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SECTION III.

TRANSFORMATION OF CO-ORDINATES.

53. When a line is represented by an equation with refer-

ence to any system of axes, we can always transform that equa-

tion into another which shall equally represent the line, but

with reference to a new system of axes chosen at pleasure.

This is called the transformation of co-ordinates, and may con-

sist either in altering the relative position of the axes without

changing the origin ; or changing the origin without disturb-

ing the relative position of the axes ; or we may change both

the direction of the axes and the position of the origin.

54. To change the originfrom onepoint to another without

altering the direction of the axes.

Let AX, AY be the primitive axes, and

let A'X', A'Y' be the new axes, respective-

ly parallel to the preceding.

Let AB, A'B, the co-ordinates of the new
origin referred to the old axes, be repre-

A b M ^ sented by a and h ; let the co-ordinates of

any point P referred to the primitive axes be x and y, and the

co-ordinates of the same point referred to the new axes be x'

and y
f

. Then we shall have

AM=AB+BM=AB+A,M/

,

or x—a+x\
Also, PM=MM'+PM'=BA'+ PM',

or y=zb+ y'.

Hence, to find the equation to any line when the origin is

changed, the new axes remaining parallel to the old, we must

substitute in the equation to the line, a+x f

for x, and b+y'
for y.
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These formulas are equally true for rectangular and oblique

co-ordinates.

Ex. 1. Find what the equation 2x+ 3y=S becomes when the

origin is transferred to a point whose co-ordinates are a= 3,

J=l. Ans. 2x'+ 32j'=-l.

Ex.2. Find what the equation y+2x=z — 5 becomes when
the origin is changed to the point (2, 1).

Ans. y'+2x'= —10.

Ex. 3. Find what the equation y=3x—7 becomes wThen the

origin is changed to the point (—2, —3). Ans. y'= Zx f—10.

Ex.4. Find what the equation ?/
2+ 4?/—4#+ 8= becomes

when the origin is changed to the point (1, —2).

Ans. y*=4:X.

55. To change the direction of the axes without changing

the origin, both systems being rectangular.

Let AX, AY be the primitive axes, and

AX7

, AY7 be the new axes, both systems

being rectangular. Let P be any point
; \ q .

x, y its co-ordinates referred to the old

axes ; x\ y
f

its co-ordinates referred to

the new axes. Denote the angle XAX7 A R N

by 9. Through P draw PR parallel to AY, and PM parallel

to AY 7

. From M draw MN parallel to AY, and MQ parallel

to AX.
Then aj=AE=AN-NE=AN-MQ.

Also AN=AM cos. XAX7 =z#7

cos. 0,

and MQ=PM sin. MPQ=2/7
sin. 9.

Hence x—x' cos. 0— y' sin. 9.

Also 2/=PK=QR+PQ=MN+PQ.
But MN=AM sin. MAX=a?' sin. 9,

and PQ=PM cos. NPQ=y' cos. 9.

Hence y— 1^' sin. 9+yf
cos. 9.

Hence, to find the equation to any line when referred to

the new axes, we must substitute in the equation to the line,

x' cos. 9— y' sin. 9 for x, and x' sin. 9+y' cos. 9 for y.

/*
M

-X
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Ex.1. Find what the equation x+y=10 becomes when the

axes are moved through an angle of 45°.

V2
Note. sin. 45°= cos. 45°=-y-.

Here ®=|V2-|v2
>

By substitution, the given equation becomes x'= 5V% Ans.

Ex. 2. Find what the equation y=3x—6 becomes when the

axes are moved through an angle of 45°.

Ans. 2y'=x f

—3V%-
Ex. 3. Find what the equation ?/

2—x2
=:6 becomes when the

axes are moved through an angle of 45°. Ans. x'y'— Z.

x ?/

Ex.4. Find what the equation o+ o=l becomes when the

axes are moved through an angle of 45°.

56. To transform an equationfrom rectangular to oblique

co-ordinates.

Let AX, AY be the primitive axes, and

AX',AY7 be the new axes. Let P be any

point ; x, y its co-ordinates referred to the

old axes ; x f

, y
r

its co-ordinates referred

to the new axes. Through P draw PR
parallel to AY, and PM parallel to AY 7

.

Draw also MN parallel to AY, and MQ parallel to AX. De-

note the angle XAX' by a, and the angle XAY' by j3.

Then a=AR=AN+NR=AN+MQ.
But AN=AM cos. XAX7= x' cos. a,

and MQ=PM cos. PMQ=y/

cos.
ft.

Hence x—x' cos. a+ y
f

cos.
ft.

Also ?/=PR=QR+PQ=MN+PQ.
But MN asAM sin. XAX'= x' sin. a,

and PQ=PM sin. PMQ=y' sin. j3.

Hence y—^' sin. a+ y
f

sin.
ft.

Y'

AP

/ M/^ Q/^^^
N R
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Hence, if we wish to pass from rectangular to oblique axes, we
must substitute in the equation to the line, x f

cos. a+y' cos. /3

for x, and x' sin. a+y' sin. /3 for?/.

If the origin be changed at the same time to a point whose

co-ordinates referred to the primitive system are m and n, these

equations will become

x—m+x' cos. a+y' cos. /3.

y=n+x'msm. a+y' sin. [3.

In the following examples the origin and the axis of X are

supposed to remain unchanged.

Ex. 1. Transform the equation y=4:—x from rectangular to

oblique co-ordinates, the new axes being inclined to one anoth-

er at an angle of 45°. Ans. #'+ ?/y/2=4.

Ex.2. Transform the equation y=3x from rectangular to

oblique co-ordinates, the new axes being inclined to one anoth-

er at an angle of 45°. Ans. 3x'+y\/2= 0.

Ex. 3. Transform the equation y—^—x from rectangular to

oblique co-ordinates, the new axes being inclined to one anoth-

er at an angle of 60°. Ans. y'(V3+l)+ 2x'=8.

Ex. 4. Transform the equation 2x=Sy+6 from rectangular

to oblique co-ordinates, the new axes being inclined to one an-

other at an angle of 60°. Ans. Zx'+ y'(l-^S)= Q.

57. To transform an equationfrom rectangular to polar

co-ordinates.

Let AX, AT be the rectangular axes ; let

B be the pole ; and let BD, the initial line,

be parallel to AX.
Let P be any point ; a?, y its co-ordinates

referred to the rectangular axes
; p, its po- J^—^ ^-

lar co-ordinates. Draw PM, BC parallel to

AY, and let a, b be the co-ordinates of B referred to the prim-

itive axes.

Now AM=AC+CM=AC+BD.
But BD=BP cos. PBD=p cos. 0.

Hence x=a+p cos. 0.

u i>
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Also PM=DM+PD=BC+PD.
But PD=BP sin. PBD=P sin. 0.

Hence y—b+p sin. 0.

Hence, to transform the equation to any line from rectangular

to polar co-ordinates, we must substitute in the equation to the

line, a+p cos. for x, and b+p sin. for y.

In the following examples the pole is supposed to coincide

with the origin, and the initial line with the axis of X.

Ex. 1. Transform the equation x2+ y
2= 9 from rectangular to

polar co-ordinates. Ans. p
2
(cos.

20+sin. 2

0)= 9, or p= 3.

Ex.2. Transform the equation xy—4: from rectangular to

polar co-ordinates.

Note. Sin. 20=2 sin. cos. (Trig., Art. 73).

Ans. p
2
sin. 20=8.

Ex. 3. Transform the equation x2+y2= ?nx from rectangular

to polar co-ordinates. Ans. p—m cos. 9.

Ex. 4. Transform the- equation x2—y2= 3 from rectangular

to polar co-ordinates.

Note. Cos. 20= cos.
2
0-sin. 2

(Trig., Art. 73).

Ans. p
2
cos. 20=3.

58. To transform an equation from oblique to rectangular

axes, find the values of x' and y
f from the formulas of Art. 56.

To transform an equation from polar to rectangular co-ordi-

nates, deduce the values of p and from the equations of Art.

57. These values are

p
>= (x-a)2+(y-b)%

„ y—b
and tang. 0=' .

to x—

a
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SECTION IV.

THE CIRCLE.

59. Definition. A circle is a plane figure bounded by a

line, all the points of which are equally distant from a point

within called the centre. The line which bounds the circle is

called its circumference. A radius of a circle is a straight

line drawn from the centre of the circle to the circumference.

60. Tofind the equation to a circle referred to rectangtdar

axes when the origin of co-ordinates is at the centre.

Let A be the centre of the circle, and

P any point on its circumference. Let

r be the raclius of the circle, and x, y the

co-ordinates of P. Then, by Geom., Bk.

IY.,Pr.ll,

AB2+BP 2=AP2

;

or, x^+if— r
2

,

which is the equation required.

61. Points ofintersection with the axes. If we wish to de-

termine the points where the curve cuts the axis of X, we must

put y=0,
for this is the property of all points situated on the axis of ab-

scissas. On this supposition, we have

x— dtzr,

which shows that the curve cuts the axis of abscissas in two

points on different sides of the origin, and at a distance from

it equal to the radius of the circle.

To determine the points where the curve cuts the axis of or-

dinate*, we make %= 0, and we find

y=±r,
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which shows that the curve cuts the axis of ordinates in two

points on different sides of the origin, and at a distance from it

equal to the radius of the circle.

62. Curve traced through intermediatepoints. If we wish

to trace the curve through the intermediate points, we reduce

the equation to the form

2/=± VV2— 32

,

from which we may compute the value of y corresponding to

any assumed value of x.

Example. Trace the curve whose equation is x2 +y*= 100.

By assuming for x different values from to 11, etc., we ob-

tain the corresponding values of y as given below.

"When 3=0, y=z ±10.

3=1,2/= ±9.95.

3=2, y= ±9.80.

x=3, 2/= ±9.54.

»=4,y==9.16.
3=5, y— ±8.66.

When x= 6, y=±8.00.
3= 7, ?/=±7.14.

3= 8, y= ±6.00.

3= 9,j/= ±4.36.

3= 10, 2/= ±0.00.

a?=ll, y is imaginary.

When 3=0, ?/ will equal ±10, which

gives two points, a and a 7

, one above

and the other below the axis of X.

When 3=1, y— ±9.95, which gives the

points b and V. When 3=2, y— ±9.80,

which gives the points c and c', etc. If

we suppose x greater than 10, the value

of y will be imaginary, which shows that

the curve docs not extend from the centre beyond the value

3= 10.

If 3 is negative, we shall in like manner obtain points in the

third and fourth quadrants, and the curve will not extend to

the left beyond the value x— —10.

Since every value of x furnishes two equal values of y with

contrary signs, it follows that the curve is symmetrical above

and below the axis of X.
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63. To find the equation to a circle when the origin is on

the circumference, and the axis oflLjpasses through the centre.

Let the origin of co-ordinates be at A, a

point on the circumference of the circle, and

let the axis of X pass through the centre.

Let r be the radius of the circle, and let x, y
be the co-ordinates of P, any point on the

circumference. Then CB will be represent-

ed by #— r.

Now CB2+BP2=CP2

,

or {x—ry+ y
1— r%

whence y~— 2rx— x*,

which is the equation required.

64. Points ofintersection with the axes. If we wish to de-

termine where the curve cuts the axis of X, we make y=Q y

and we find x(2r— x)— 0.

This equation is satisfied by supposing x~0
y
or 2r—x=0,

from the last of which equations we find x=2r. The curve,

therefore, cuts the axis of abscissas in two points, one at the

origin, and the other at a distance from it equal to 2r.

To determine where the curve meets the axis of ordinates,

we make x=0, which gives

which shows that the curve meets the axis of ordinates in but

one point, viz., the origin.

65. Curve traced through intermediatepoints. In order to

trace the curve through intermediate points, wre reduce the

equation to the form

y— ±V%rx—x2

,

from which we may compute the value of y corresponding to

any assumed value of x, as in Art. 62.

Ex. 1. Trace the curve wThose equation is y'1= 10x—x'2

.

By assuming for x different values from to 11, etc., we ob-

tain the corresponding values of y as given on the next page.
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When x=0, y=0.

a?=2, 2/=4.

aj=3, y=4.58.

a?=4, y =4.90.

a?=5, y=5.

Whena= 6, y=4.90.

#=7, 2/ =4.58.

x— 8, 2/=4.

as= 9, y=3.
a?=10,y=0;

#=11, y is imaginary.

These values may be represented by a figure as in Art. 62.

Ex. 2. Trace the circle x2+y2= 10y.

Ex. 3. Trace the circle x2+y2= —10a?.

66. To find the equation to the circle referred to any rect-

angular axes.

Let C be the centre of the circle, and

P any point on its circumference. Let r

be the radius of the circle ; a and b the

co-ordinates of C ; x
y y the co-ordinates

of P. From C and P draw lines perpen-

dicular to AX, and draw CD parallel to

x AX. Then
CD2+DP2=CP2

;

B

that is,

which is the equation required.

67. Varieties in the equation to the circle. If in the equa-

tion (x—a)2+(y—b)2—r2 we suppose a=0 and 5= 0, the centre

of the circle becomes the origin of co-ordinates, and the equa-

tion becomes

x2

+y
2=r2 (asm Art. 60).

If we suppose a=r and 5=0, the axis ofX becomes a diam-

eter, and the origin is at its extremity, and the equation be-

comes (x— ry+y*—

r

2

,

whence y
2= 2rx—x2

(as in Art. 63).

If we suppose a= and b— i\ the axis of Y becomes a diam-

eter, and the origin is at its extremity, and the equation be-

comes x2+ (y— ?y= r*

whence x2— 2ry— y
2

.
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68. General equation to the circle. Expanding the general

equation to the circle referred to rectangular axes, we have

x2 + y
2-2ax-2by+ a*+ b

2-r2= 0',

and hence it appears that the general equation to the circle is

of the form
x2+y2+Ax+By+C= 0,

where A, B, and C are constant quantities, any one or more of

which in particular cases may be equal to zero. The equation

A^2+ A?/
2+B^+C?/+Dr=0

may be reduced to this form by dividing by A, and is therefore

the most general form that the equation can assume when the

co-ordinates are rectangular.

69. To determine the circle represented by an equation. If

we can reduce an equation to the form

^+2/
2+A^+By+C= ? Mi TO

we may determine the circle it represents ; for, adding —j
—

to both sides of the equation, and transposing C, we have

f BY A2+B2

„

By comparing this equation with that of Art. 66, we perceive

that it represents a circle, the co-ordinates of whose centre are

— -q, — 7T, and whose radius is

If A2+B2 <4C, the radius becomes imaginary, and the equa-

tion can represent no real curve.

Ex. 1. Determine the co-ordinates of the centre, and the ra-

dius of the circle denoted by the equation #2

-f y
2+4#— 8?/— 5

= 0.

This equation may be reduced to the form

(^+2)
2+ (2/—4)

2= 25.

Hence the co-ordinates of the centre are — 2, 4, and the ra-

dius is 5.

D

(*+f) +(l
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Ex. 2. Determine the co-ordinates of the centre and the ra-

dius of the circle denoted by the equation a?
2+y2+ 4?/-—4#—

1

= 0. Ans. Co-ordinates 2, — 2, radius 3.

'

Ex. 3. Determine the co-ordinates of the centre and the ra-

dius of the circle denoted by the equation x2+ y
2+ Qx—4?/— 36

= 0. Ans. Co-ordinates — 3, 2, radius 7.

Ex. 4. Determine the co-ordinates of the centre and the ra-

dius of the circle denoted by the equation a?
2+y2—3x— 4?/+4

= 0. Ans. Co-ordinates -|, 2, radius -§.

Ex. 5. Determine the co-ordinates of the centre and the ra-

dius of the circle denoted by the equation x'
2+ y

2— 2a(x—y]
2 ]

Ans. Co-ordinates a, —a, radius (2a
2+ e

2

)
2

.

:
Ex. 6. Eind the equation to the circle whose radius is 9, and

co-ordinates of the centre —1, 5.

Ex. 7. Find the equation to the circle whose radius is 5a, and

co-ordinates of the centre 3a, ^a.

70. To find thepolar equation to a circle when the origin is

on the circumference, and the initial line is a diameter.

Let A be the pole situated on the

circumference of the circle ; let AX,
passing through the centre, be the ini-

tial line, and let P be any point on the

circumference. Let r be the radius of

the circle, and let p and 9 be the polar

co-ordinates of P.

The equation of the circle referred to rectangular axes (Art.

63) is y
2= 2ra— a?

2
.

To transform this equation from rectangular to polar co-or-

dinates (Art. 59), we must substitute for x, p cos. 0; and for

?/, p sin. 0.

Making this substitution, we obtain

p
2
sin. *0=2rp cos. 0—p* cos.

2

0;

or, by transposition,

P
2
(sin.

2 + cos.
2

0) = 2rp cos. 0.
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But sin.
2 + cos.

2
is equal to unity.

Hence, dividing by p, we obtain

p= 2r cos. 0,

which is the polar equation of the circle.

71. Points ofthe circle determined. When 0=0, cos. 0=1,
and we have

p= 2r=AB.
As increases from to 90°, the radius vector determines

all the points in the semi-circumference BPA ; and when
= 90°, cos. = 0, and p becomes zero.

From = 90° to = 180° the radius vector is negative, and is

measured into the fourth quadrant, determining all the points

in the semi-circumference below the axis of abscissas. From
= 180° to = 360° the circumference is described a second

time.

Ex.1. The polar co-ordinates of P are jo= 10, 0=45° ; deter-

mine the radius of the circle.

Ex. 2. The radius of a circle is 5 inches, and p= 8 inches

;

determine the value of 0.

Ex. 3. The radius of a circle is 5 inches, and 0=60° ; deter-

mine the radius vector.

72. Definition. Let two points be taken on a curve, and a

secant line be drawn through them ; let the first point remain

fixed, while the second point moves on the curve toward the

first until it coincides with it ; when the two points coincide,

the secant line becomes a tangent to the curve.

Suppose a straight line MP to intersect

a curve in two points, M and P, and let T ^^

—

T '

the line turn about the fixed point P until

it comes into the position PM'. The sec-

ond point of intersection, which at first was on the left of P, is

now found on the right of P ; hence, in the movement of the

straight line from the position MP to the position PM', there

must have been one position in wThich the point M coincided
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with P. In this position, represented by the line TT', the line

is said to be a tangent to the curve.

This definition of a tangent suggests a method of finding its

equation which is applicable to all curves.

73. To find the equation to the tangent at any jpoint of a
circle.

Let the equation to the circle be x2+y
2=r2

.

Let x\ y
f be the co-ordinates of the point on the circle at

which the tangent is drawn, and x", y" the co-ordinates of an

adjacent point on the circle. The equation to the secant line

passing through the points a?
7

, y
f and x'\ y" (Art. 40) is

Now, since the points x', y' and x", y" are both on the cir-

cumference of the circle, we must have

"+tj"=r*=:x"*+!,
y"*-y'*=x'*-x'

r-

y"-y> X"+ X'
wlience ti^'=-y^

xn+yn=r*=:x"*+y"\

or i/"-yn=xn-xm
)

Substituting this value in equation (1), we obtain

y-'!/=-
S

^r^{x-x'), (2)

which is the equation to the secant line passing through the

two given points.

Now when the point x\ y
r

coincides with the point x", y", we

have &'=#", and y'— y" ; hence equation (2) becomes

x'

which is the equation to the tangent at the point x\ y', where x

and y are the co-ordinates of any point of the tangent line.

Clearing of fractions and transposing, we obtain

or xx'+ yi/'^r2

,

which is the simplest form of the equation to the tangent line.
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74. Points where the tangent cuts the axes. To determine

the point in which the tangent inter-

sects the axis of X, we make y=0,
which gives

or ;/=AC,

since x is AC when y=0.
To determine the point in which

the tangent intersects the axis of Y, we make x=0, which gives

or J
y

Ex. 1. On a circle whose radius is 6 inches, a tangent line is

drawn through the point whose ordinate is 4 inches ; determine

where the tangent line meets the two axes ; also the angle

which the tangent line makes with the axis of X.

Ex. 2. Find the point on the circumference of a circle whose

radius is 5 inches, from which, if a radius and a tangent line

be drawn, they will form with the axis of X a triangle wThose

area is 35 inches.

75. To find the length of the tangent drawn to the circle

from a given point.

Let P be a point without the circle from

which a tangent line PM is drawn. Draw
the radius AM, and join AP. Let the co-or-

dinates of P be x, y. Then we have

PM2=AP2-AM2
.

But AP2=£2+ 2/

2
(Art.l9).

Hence PM= (x
2 + tf-r

2

)*,

which denotes the length of the tangent line from the point x
y y.

If x2+ y
2>r2

, or the point P be without the circle, the tan-

gent PM will be real ; if x2+ y
2
=:i*

2

, or the point P be on the

circle, the length of the tangent becomes zero ; if x2+ y
2<r2

, or
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the point P be within the circle, the tangent is imaginary ; but

the quantity r^—xf—y1

represents the product of the segments

of the chord drawn through P.

Ex. 1. Find the length of the tangent drawn from the point

-—7, +5, to a circle whose radius is 4.

Ex. 2. Find the length of the tangent drawn from the point

—3, —6, to a circle whose radius is 5.

76. Definition. The normal at any point of a curve is a

straight line drawn through that point perpendicular to the

tangent to the curve at that point.

77. To find the equation to the normal at anypoint of a

circle.

Let the equation to the circle be x*+y2=r2

, and let x', y
r

be

the co-ordinates of the point on the circle through which the

normal is drawn.

We have found (Art. 73, Eq. 3) that the equation to the tan-

gent at the point x\ y' is

y-y'=-??(*—«0j
x f

where —— denotes the tangent of the angle which the tangent
if

line makes with the axis of X. Hence (Art. 46) the equation

to the norma! will be

v
f

which, after reduction, becomes

?/

and this is the equation to the normal passing through the giv-

en point.

?/
We have found (Art. 40) that y= '—x is the equation to a

x

straight line passing through the origin and through a given

point ; hence the normal at any point of a circle passes through

the centre.
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78. To determine the co-ordinates of the points of intersec-

tion of a straight line with a circle.

Let the equation to the circle be

x2+y2=r% (1)

and the equation to the straight line be

y=z?nx+c. (2)

Since the co-ordinates of every point on a line must satisfy

its equation, the co-ordinates of the points through which both

of the given lines pass must satisfy both equations. We may
therefore regard (1) and (2) as simultaneous equations contain-

ing but two unknown quantities, and we may hence determine

the values of x and y. By substitution in equation (1) we ob-

tain

x2+mV

+

2cmx+

c

2=

r

2

,

or (1 +m2
)x

2+ 2cmx=r2—

c

2

,

an equation of the second degree which may be solved by com-

pleting the square. We thus find

—cm± Vr2
(l +m2

)
—&

and since x has two values, we conclude that there will be two

points of intersection.

If r\l+m*)= c*, the two values of x become equal, and the

straight line will touch the circle. If r
2
(l+ ra

2

) is less than e
2

,

the straight line will not meet the circle.

Ex. 1. Find the co-ordinates of the points in which the circle

whose equation is x2+ y
2 =:25 is intersected by the line whose

equation is %+ y=zl. * j #=:4, and y—— 3,

"

1 or x=—3, and y— ^.

Ex. 2. Find the co-ordinates of the points in which the circle

whose equation is x2+ y
2= 25 is intersected by the line whose

equation is x+y=5. * ( x= 5
y
and y—0^

'

( or #=0, and ?/=5.

Ex. 3. Find the co-ordinates of the points in which the circle

whose equation is x2
-\-y

2= Go is intersected by the line whose

equation is 3x+ y=25. * ( a?=7, and y=4,
or x— S

y
and ?/-!.



80 ANALYTICAL GEOMETRY.

Ex. 4. Find the points in which the line y=5x+2 intersects

the circle y
2+#2—4?/— 13#=9.

Ans.\ ®=Mndy=7,
( or x— — f, an(l V— — ¥•

Ex. 5. Find the points in which the line y= 3a?+ 2 cuts the

circle y
2+

x

2— 4#+ 4y= 7.

79. Tofind the co-ordinates of the points ofintersection of
two circumferences.

Let CPP', DPP' be two cir-

cumferences which intersect in

P and P'. Let A and B be the

centres of the circles, r and r
f

their radii, and let AB, the dis-

tance between their centres, be

denoted by d. Assume the line

AB as the axis of X, and let AY be drawn perpendicular to

AX for the axis of Y.

The equation to the circle CPP' is

x2+ y
2= r\ (1)

The equation to DPP 7

, the co-ordinates of whose centre are

(d, 0) (Art. 66), is

(x-d)2 +y2 =r'\ (2)

Since the co-ordinates of every point of a circumference

must satisfy the equation of the circle, the co-ordinates of the

points through which both circumferences pass must satisfy

both equations. We may therefore regard (1) and (2) as sim-

ultaneous equations involving but two unknown quantities, and

hence we may determine the values of x and y. Subtracting

equation (2) from equation (1), we obtain

2xd-d 2= r
2-r/2

,

r*-. r
' 2+d2

whence x— ^j
.

Substituting this value of x in equation (1), we have
Cr*-r"+d 2V

y= r -[ 2d \>
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whence y= ±-^ V±dV-(r2-r"2+dJ,

which gives the ordinates of the points of intersection of the

two circles.

The double sign of y shows that the two points of intersec-

tion have the same abscissa AE, but two ordinates numerically

the same and with contrary signs. Hence, when two circum-

ferences cut each other, the line joining their centres is perpen-

dicular to the common chord, and divides it into two equal

parts.

Ex. 1. Find the co-ordinates of the points of intersection of

the two circumferences

x2+y
2= 25, and x'+ tf+Ux^-lS.

Ans. x= -2.714; y= ±4.199.

Ex. 2. Find the co-ordinates of the points of intersection of

the two circumferences x2+y2
=:6, and x2+ y

2— §x= — 8.

Ans. x=1.75; y= ±1.714.

Ex. 3. Find the co-ordinates of the points of intersection of

the two circumferences

x2

+y2— 2x—4y=l
5
and x2+ y

2—4:X— 6y= — 5.

80. To find the equation to the straight line which passes

through thepoints ofintersection oftwo circles which cut each

other.

Let the equations of the two circumferences, whose centres

are at B and C, be severally

x2+ y
2+ax+by+c=0, (1)

and x2+ y
2+ a'x+ b'y+c'= 0; (2)

it is required to find the equation of the straight line passing

through the points P and P' where these circumferences inter-

sect.

Since the co-ordinates of the points P and P' satisfy each of

the above equations, we may treat them as simultaneous equa-

tions containing two unknown quantities.

Subtracting equation (2) from equation (1), we have

(a-a')x+(b-b')y+c-c'= 0. (3)

D2
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Since this is an equation of the first

degree between x and ?/, it is the equa-

tion of a straight line (Art. 37) ; and

since it must be satisfied by the co-

ordinates of the two points P and P',

it must be the equation of the straight

line DE passing through those points,

and is, therefore, the equation re-

quired.

If we combine equation (3) with the equation of either cir-

cle, we shall obtain the values of the co-ordinates of the points

of intersection as in Art. 79.

In general, if we have any two equations of curves, and wTe

add or subtract those equations as in the process of elimination

in Algebra, we obtain a new equation, which is the equation of

a new line or curve which passes through the points of inter-

section of the first two curves.

81. To find the equation to a circle which passes through

three given points.

We have found (Art 68) that the general equation to the

circle is x2+y2 +Ax+By+C=:0,
where A, B, and C are constant for a given circle, but vary for

different circles ; so that when A, B, and C are known, the cir-

cle is fully determined.

If the three points x'y', a?"y", x" fy" !

are on the circumfer-

ence of a circle, the co-ordinates of each of these points must

satisfy the equation of that circle. If then we substitute the

values of x', y
f

in the general equation, we shall obtain an equa-

tion which expresses the relation between the coefficients A, B,

and C. So also, if we substitute successively the values of

xny" and x'"y"\ we shall obtain two other equations express-

ing the relations between the same coefficients. We shall then

have three simultaneous equations expressing the relations be-

tween the three quantities A, B, and C, from which the values

of these quantities can be determined.
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Ex. 1. Find the equation to the circle which passes through

the three points 1, 2 ; 1, 3 ; and 2, 5 ; also the co-ordinates of

the centre and the radius of the circle.

Substituting these values successively in the general equa-

tion of the circle, we have

A+2B+ C+ 5= 0,

A+3B+ C+ 10 = 0,

2A+ 5B+ C+29= 0,

from which we find A=— 9; B= — 5; C= 14.

Hence the equation to the circle is x2+ y
2—9x—5y+14= 0.

Hence the co-ordinates of the centre are •§, -f ; and the radius

is 1^/2.

Ex. 2. Find the equation to the circle which passes through

the three points 2, — 3 ; 3,—4; and — 2, — 1 ; also the co-ordi-

nates of the centre and the radius of the circle.

Aiis. Eq., x2+ y
2+ Sx+ 20y+ 31 = ; co-ordinates, - 4, - 10

;

radius = -\/85.

Ex. 3. Find the equation to the circle which passes through

the origin and through the points 2, 3 and 3, 4 ; also the co-or-

dinates of the centre and radius of circle.

Ans. Eq., x2+ y
2— 23x+ lly= ; co-ordinates, -%

3
-, —^-; ra-

dius =4<v/26.

Ex. 4. Find the equation of the circle which passes through

the three points — 4, —4 ; —4, —-2 ;
— 2, +2 ; also the co-ordi-

nates of the centre and radius of circle.

Ans. Eq., x2+ y
2— 6x+6y— 32= 0; co-ordinates, 3,-3; ra-

dius, 5 -/2.

Ex. 5. Find the equation of the circle which passes through

the points —2, —4; 2, 2 ; 4, 4; also the co-ordinates of the

centre and radius of circle.

Am. Eq.,x2+ y
2—4:2x+30y+l6= 0; co-ordinates, 21, -15

;

radius =5-y/26.

Ex. 6. Find the equation of the circle which passes through

the origin and cuts off lengths 6, 8 from the axes ; also the co-

ordinates of the centre and radius of circle.

Ans. Eq., x2+ y
2— Gx— 8y=0; co-ordinates, 3, 4 ; radius, 5.
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SECTION V.

THE PARABOLA.

82. A parabola is a plane curve every point of which is

equally distant from a fixed point and a fixed straight line.

The fixed point is called the focus of the parabola, and the

fixed straight line is called the directrix.

Thus, if a straight line BC, and a point F
without it be fixed in position, and the point

P be supposed to move in such a manner

that PF, its distance from the fixed point, is

always equal to PD, its perpendicular dis-

tance from the fixed line, the point P will

describe a parabola of which F is the focus

and EC the directrix.

83. From the definition of a parabola the curve may be de-

scribed mechanically by means of a ruler, a square, and a cord.

Let BC be a ruler whose edge coincides

with the directrix of the parabola, and let

DEG be a square. Take a cord whose
G length is equal to DG, and attach one ex-

tremity of it at G and the other at the fo-

cus F. Then slide the side of the square

DE along the ruler BC, and at the same

time keep the cord continually stretched by

means of the point of a pencil, P, in contact

with the square ; the pencil will trace out a portion of a parab-

ola. For, in every position of the square,

PF+PG=PD+ PG,
and hence PF=PD;
that is, the point P is always equally distant from the focus F
and the directrix BC.
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If the square be turned over, and moved on the other side

of the point F, the other part of the same parabola may be de-

scribed.

84. A straight line drawn through the focus perpendicular

to the directrix is called the axis ofthe parabola. The vertex

of the axis is the point in which it intersects

the curve. The chord drawn through the fo-

cus of a parabola at right angles to the axis

is called the latus rectum.

Thus, in the figure, BX is the axis of the

parabola, A is the vertex of the axis, and LI/

is the latus rectum.

85. To find the equation to theparabola referred to rectan-

gular axes.

Take the directrix YY' as the axis of

ordinates, and BX, drawn perpendicular to

it through the focus, as the axis of abscis-

sas. Let BF=2&. By the definition,

FP=PD=BK
Therefore FP2=BN2

,

or FN2+PN2=BN 2

;

that is, (x—2ay+ y
2 =x'2

,

or y'2 =4ca(x—a),

which is the equation to the parabola.

If in this equation we put y=0, we have x=a, which shows

that the curve cuts the axis at a point A which bisects BF.

The equation will be simplified if we put the origin at A.

Let a?'=AN; then %=x'+ a; and, since the axis of abscissas

remains unchanged, y=y'.

By substitution, equation (1) becomes

y
/2= 4:ax

f

.

We may suppress the accents if we remember that the origin

is now at A ; thus we have

jf= 4aa, (2)
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which is the equation to the parabola referred to its vertex as

origin, and the axis of the parabola is the axis of X.

86. To trace theform of the jparabolafrom its equation.

Since y*= 4:ax
y
or x= j-, x can not be negative ; that is, the

curve lies wholly on the positive side of the axis of y.

Since y*= 4:ax, y=± 2(ax) 2
;

therefore, since this equation is unaltered if wye write —y for

y, to every point P on the curve on one side of the axis of X,

there corresponds another point P' on the other side, such that

P'JST^PN. Hence the curve is symmetrical with respect to

the axis of X.

Again, if x= 0, y=0, and has no other value ; therefore the

curve does not meet either axis at any other point besides the

origin.

Also, the greater the value we give to x, the greater values we
get for y ; and when x is infinite, y is infinite ; hence the curve

goes off to an infinite distance on each side of the axis of X.

87. To find the distance ofanyjpoint on the curvefrom the

focus.

The distance of any point on the curve from the focus is

equal to the distance of the same point from the directrix.

Hence FP=PD=BA+AN,
or FP= &+ #.

88. To find the length of the latus rectum.

In the equation
y*= 4:ax,

.put x—a;
then y

1= 4&2

,

and y=±2a,
or the latus rectum LL/' — ka (see figure in Art. 84).

If we convert the equation if— ^ax into a proportion, we
shall have x:y::yAa

;
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that is, the latus rectum is a thirdproportional to any abscissa

and its corresponding ordinate.

89. The squares ofordinates to the axis are to each other as

their corresponding abscissas.

Designate any two ordinates by y
f

,
y'\ and the corresponding

abscissas by x\ x"; then we shall have

y"= 4:ax\

y
n

*= ±ax".

Hence y
n

: y
,n

: : \.ax' : kax" : : x' : xn .

Ex.1. The equation of a parabola is y
1—^. What is the

abscissa corresponding to the ordinate 7 ? Ans. 12J.

Ex. 2. The equation of a parabola is y
2— lSx. What is the

ordinate corresponding to the abscissa 7 ?

Ans. ±Vl26.
Ex. 3. The equation of a parabola is y*=zlOx. What is the

ordinate corresponding to the abscissa 3 ?

90. To trace theform of theparabola by means ofpoints.

If we reduce the equation of the parabola to the form

y=:±2Vax,
we may compute the values of y corresponding to any assumed

value of x.

Ex. 1. Trace the curve whose equation is y
2= 4x.

By assuming for x different values from to 5, etc., we ob-

tain the corresponding values of y as given below.

When x=+Q, y=0.
" a?=l,y=±2.
" x=2,y= ±2.828.
« x=S,y=±3AG4:.
" #= 4, y— ±4.
" x=5,y= ±4.472.

The first point (0, 0) is the origin ; the

point (1, +2) is represented by a in the fig-

ure ; the point (1, —2) by a f

in the figure

;

the point (2, +2.828) by b; the point (2, -2.828) by &', etc.
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Ex. 2. Trace the curve whose equation is y
2— 18a?.

Ex. 3. Trace the curve whose

equation is x2= 9y.

The curve will be of the form

exhibited in the annexed figure,

and is evidently a parabola whose

axis is the axis of Y.

Ex. 4. Trace the curve whose equation is y
1— — 3x.

91. To find the equation to the tangent at any jpoint of a
parabola.

Let the equation to the parabola be y^—^ax.

Let x\ y' be the co-ordinates of the point on the curve at

which the tangent is drawn, and a/', y' f
the co-ordinates of an

adjacent point on the curve. The equation to the secant line

passing through the points x\ y' and #", y" (Art. 40) is

y-y'=ijr~&-*')- W
Now, since the points x'

9
y' and x", y" are both on the parabo-

la, we must have y^—^ax^
and y"*= ±ax".

Hence y'"-y"=:4.a(x"-x'),

y
n-y' ±a

x //—x /~y // + y
r

Substituting this value in equation (1), the equation of the

secant line becomes
4a

y-y'=^7^>{x-xy (2)

The secant will become a tangent when the two points coin-

cide, in which case y'=zy".

Equation (2) will then become
2a

y-y'=->(x-x% (3)

which is the equation to a tangent at the point x\ y'

.

Clearing of fractions and transposing, wTe obtain

yy'= 2a(x-x')+ ?/'%

or ,.
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yij=2ax— 2ax r + 4##',

or yt/z=2a(x+x%

which is the simplest iprm of the equation to the tangent line.

92. Points where the tangent cuts the axes. To determine

the point in which the tangent intersects

the axis of X,we make y= , which gives

= 2a(x+x');

that is, &=— x',

or AT=-AR.
To determine the point in which the

tangent intersects the axis of Y, we
make x—

y
which gives

2axf y" y
f

y-

that is,

y
f ~2y'~~2'

AB=iPR.

93. Definition. A subtangent to a parabola is that part of

the axis intercepted between a tangent and ordinate drawn to

the point of contact. Thus TR is the subtangent correspond-

ing to the tangent PT.

From Art. 92 we see that the subtangent to the axis is bisect-

ed by the curve.

94. The preceding property enables us to draw a tangent to

the curve through a given point. Let P be the given point

;

from P drawPR perpendicular to the axis, and make AT= AR.
Draw a line through P and T, and it will be a tangent to the

parabola at P.

95. To find the equation to a tangent to the parabola in

terms of the tangent of the angle it makes with the axis.

In the equation of a tangent line,

2a
2/-2/

/=^-^ /

)(Art.91,Eq.3),

— represents the trigonometrical tangent of the angle which
if
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the tangent line makes with the axis of the parabola (Art. 38).

If we represent this tangent by m, we shall have

2a _ y' a—=m, and 77= —. (1)
y'

.

' 2 m w
The equation to a tangent line to the parabola (Art. 91) is

yt/=2a(x+x%
. 2a 2ax r

whence ?/=—-,x+—7-,J y> T y ,

2& &ax'
= —jx

2a yf

Hence, substituting equation (1), we have

which is the equation to a tangent line.

Hence the straight line whose equation is

a
y—mx+ —.

touches the parabola whose equation is y^— ^ax.

Ex. 1. Find the equation of a tangent to the parabola y'— X'&x

at the point x'= 2
}
y'= 6.

Ex. 2. Find the equation, of a tangent to the parabola ?/
2
:=4#,

and parallel to the right line whose equation isy= 5x+ l.

Ex. 3. On a parabola whose equation is y*=zl0x, a tangent

line is drawn through the point whose ordinate is 8. Deter-

mine where the tangent line meets the two axes of reference.

Ex. 4. On a parabola whose latus rectum is 10 inches, a tan-

gent line is drawn through the point whose ordinate is 6 inch-

es, the origin being at the vertex of the axis. Determine where

the tangent line meets the two axes of reference.

Ex. 5. Find the angle which the tangent line in the last ex-

ample makes with the axis of X.

Ex. 6. On a parabola whose latus rectum is 10 inches, find

the point from which a tangent line must be drawn in order

that it may make an angle of 35° with the axis of the parabola.
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96. Definitions. A normal is a line drawn through any

point of the curve perpendicular to the tangent at that point,

and terminated by the axis.

A subnormal is the portion of the axis intercepted between

the normal and the ordinate drawn from the same point of the

curve.

97. To find the equation to the normal at any point of a
parabola.

Let x\ y' be the co-ordinates of the given point.

The equation to a straight line passing through this point

(Art. 3S) is y—y'z=m(x—af)
;

and, since this line must be perpendicular to the tangent whose

equation is

2/-2/'=!?(^-^)(Art91,Eq.3),
V

ywe have m=z —— (Art. 45).

Hence the equation to the normal is

y-y=- y
2d

(x—x').

98. Point where the normal cuts the axis ofx. To find the

point in which the normal intersects the axis of abscissas, make

y=0 in the equation to the normal,

and we have, after reduction,

x—x'— 2a.

But x is equal to the distance AN,
and x f

to AR; hence x—x f

is equal

to EN, which is equal to 2a; that is,

the subnormal is constant, and is

equal to half the Tatus rectum.

Ex. 1. On a parabola whose latus rectum is 10 inches, a nor-

mal line is drawn through the point whose ordinate is 6 inches.

Determine where the normal line, if produced, meets the two

axes of reference.
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Ex. 2. Find the point on the curve of a parabola whose latus

rectum is 10 inches, from which, if a tangent be drawn, and also

an ordinate to the axis of X, they will form with the axis a tri-

angle whose area is 36 inches.

99. If a tangent to theparabola cuts the axis produced, the

points of contact and intersection are equally distantfrom
thefocus.

Let PT be a tangent to the parabola

at P, and let PF be the radius vector

drawn to the point of contact.

We have found (Art. 92)

TA=AK.
Hence TF=AK+AF=FP (Art. 87);

that is, the distance from the focus to

the point where the tangent cuts the

axis, is equal to the distance from the

focus to the point where the tangent touches the curve.

100. A tangent to the curve makes equal angles with the ra-

dius vector and with a line drawn through thepoint ofcontact
parallel to the axis.

Let TT ; touch the parabola at P, and let BP be drawn

through P parallel to AX ; then the angle BPT 7
is equal to the

angle ATP. But since TF= PF,the angle FTP is equal to

the angle FPT. Hence FPT is equal to BPT 7

, or the two lines

FP and BP are equally inclined to the tangent.

101. If a ray of light, proceeding in the direction BP, be in-

cident on the parabola at P, it will be reflected to F on account

of the equal angles BPT 7 and FPT. In like manner, all rays

coming in a direction parallel to the axis, and incident on the

curve, will converge to F. Also, if a portion of the curve

revolves round its axis so as to form a hollow concave mirror,

all rays from a distant luminous point in the direction of the

axis will be concentrated in F. Thus, if a parabolic mirror be
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held with its axis pointing to the sun, an intense heat and a

brilliant light will be found at the focus.

102. Iffrom the focus of a parabola a straight line be

drawn perpendicular to any tangent, it will intersect this tan-

gent on the tangent at the vertex.

Let the tangent PT be drawn, and from

the focus F let FB be drawn perpendicu-

lar to it ; the point B will fall on the axis

AY, which touches the curve at A (Art.

86).

Since the triangle PFT is isosceles, the

line FB, drawn perpendicular to the base

PT, will pass through its middle point

;

and since AT=AE (Art. 92), the line AY, which is parallel to

PR, also passes through the middle point of PT ; that is, the

line FB intersects PT in the same point with AY.
Since the triangle FBT is right angled at B, we have

FB2=FAxFT=FAxFP,
or the perpendicularfrom thefocus to any tangent is a mean
proportional between the distances of thefocusfrom the ver-

tex and the point of contact.

103. To determine the co-ordinates of the points of inter-

section of a straight line with aparabola.

Let the equation to the parabola be

y'—^ax, (1)

and the equation to the straight line be

y=mx+ c. (2)

As in Art. 78, we may regard (1) and (2) as simultaneous

equations, containing but two "unknown quantities. By substi-

tution in equation (1), we obtain

my2= 4:ay— kac.

Completing the square, we obtain

%a 2, a
i

y=— ± —(a —amc) *
;* m rn> J
'
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and, since y has two values, we conclude that there will be two

points of intersection.

If a—mc^ the two values of y become equal, and the straight

line will touch the parabola. If a—mc is negative, the straight

line will not meet the parabola.

Ex. 1. Find the co-ordinates of the points in which the parab-

ola whose equation is y*=4:X is intersected by the line whose

equation is y— 2x— 5.

Ans. 2/=4.3166, or -2.3166; #= 4.6583, or 1.3417.

Ex. 2. Find the co-ordinates of the points in which the parab-

ola whose equation is ?/
2= 18# is intersected by the line whose

equation is y=2x— 5.

Ans. 2/=12.5777, or -3.5777; #=8.7888, or 0.7111.

Ex. 3. Find whether the parabola whose equation is y*= 16x

is intersected by the line whose equation is y—2x+ 2
y
and, if

there is a point of contact, determine its co-ordinates.

Ex. 4. Find whether the parabola whose equation is y*= 16x

is intersected by the line whose equation is y=2x+5.

104. To determine the co-ordinates of the points of inter-

section ofa circle andparabola.
If the centre of the circle is not restricted in position, there

may be four points of intersection, corresponding to an equa-

tion of the fourth degree, which can not generally be resolved

by quadratics. If, however, the centre of the circle is upon

the axis of the parabola, the several points of intersection may
be easily found.

Let the equation to the parabola be

y*= 4:ax,

and the equation to the circle be

x*+ tf=:r*;

then, by substitution, we have

and x=-2a±(4:a'i+ ry,
where x lias two values, but one of them is negative, and gives

imaginary values for y. There will, therefore, be but two real
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points of intersection. These have the same abscissa, and their

ordinates will differ only in sign.

Ex. 1. Find the co-ordinates of the points in which the parab-

ola whose equation is if— 4:X is intersected by the circle whose

equation is ^2+ ?/
2= 64. Ans. #= 6.2462; y= ±4.9985.

Ex. 2. Find the co-ordinates of the points in which the parab-

ola whose equation is y*=.l§x is intersected by the circle whose

equation is x*+y*=:32x— 40.

Anil'-4*?™*
a /K

\ y=±6-/2, or ±6^5.
Construct the two curves, and show the points of intersec-

tion.

Ex. 3. Find the co-ordinates of the points in which the parab-

ola whose equation is y*= 2x is intersected by the circle whose

equation is x*+ y*= 6x+5.

105. To transform the equation to the parabola into anoth-

er referred to oblique axes, and so that the equation shallpre-

serve the sameform.
The formulas for passing from rectangular to oblique axes

(Art. 56) are x—m-\-x' cos. a+ y' cos. j3,

y—n+xr
sin. a+ y' sin. fi.

Substituting these values in the equation y^— ^ax, and ar-

ranging the terms, we have

y
/2

sin.
3

/3 + #/2
sin.

2
a+2#y sin. a sin./3+

2(n sin. ft
— 2a cos. fi)y'+ n2—4cam= 2(2a cos. a— n sin. a)x',

which is the equation to the parabola referred to any oblique

axes.

In order that this equation may be of the form y*= 4:ax, we
must have the following conditions :

1st. There must be no absolute term ; hence ?i
2— 4:a?n= Q.

2d. There must be no term containing a/
2

; hence sin.
2
a= 0.

3d. There must be no term containing #'?/'; hence sin. a sin.

0=0.
4th. There must be no term containing y''; hence n sin. /3

—
2a cos. /3= 0.
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These equations contain four arbitrary constants, m, n, a, j3 /

it is therefore possible to assign such values to the constants

as to satisfy the four equations, and thus reduce the new equa-

tion of the parabola to the proposed form.

Since the equation y'— ^ax becomes ri*= 4cam by substituting

the co-ordinates of the new origin for x and y, it follows that

the first condition, ft
2—4$m= 0, requires the new origin to be

on the curve.

The second condition, sin.
2a=0, requires the new axis ofx

to he parallel to the axis of theparabola.

The third condition, sin. a sin. j3= 0, is satisfied by the sec-

ond, without introducing any new condition.

2a 2a
Since —7 or — (Art. 95) has been found to represent the tan-

gent of the angle which the tangent line makes with the axis

of the parabola, the fourth condition, n sin. /3—2a cos. /3= 0, or

—75=:tang. j3=— , requires that the new axis ofj shall be
cos

tangent to the curve at the origin.

If, therefore, the curve is

referred to any tangent line

A'Y', and a line A'X' drawn
: ' through the point of contact

parallel to the axis, the equa-

tion becomes

2/

/2
sin.

2

j3=
2{2a cos. a—n sm. a)x';

or, since sin. a= 0,

and cos. a— 1,

we have

4<z

sin.
2

j3

If we represent -:—775 by 4a', and omit the accents of the va-
sm.

ft

riables, we shall have

which is the equation required.
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106. Since the preceding problem furnished four arbitrary

constants, ??z, n, a, /3, and required but three independent con-

ditions (the second and third being but one), we may assign

any value at pleasure to either of them ; that is, the new origin

may be placed any where on the curve.

107. From the equation of Art. 105, we find

y— -±iV^a
f

x^

which shows that for every positive value of x there are two

values of y equal numerically but having opposite signs, and

these two values, taken together, form a chord PP 7
parallel to

the axis of Y, which chord is bisected by the axis of X at P.

So, also, the parallel chord QQ' is bisected by the axis of X at

X. Hence a straight line parallel to the axis oftheparabola

bisects all chords parallel to the tangent at its extremity.

108. Definition. A diameter of a parabola is a straight line

drawn through any point of the curve parallel to the axis of

the parabola. The vertex of the diameter is the point in which

it meets the curve.

109. The equation of Art. 105, y*= 4:a
r
x, is called the equa-

tion of the parabola referred to a tangent line, and the diame-

ter drawn through the point of contact ; and, since the new
axis of Y is a tangent to the curve at the origin, a diameter bi-

sects all chords parallel to the tangent at its extremity.

The equation y*— ka'x

shows that for oblique axes the squares of the ordinates are

proportional to the corresponding abscissas, which is a gener-

alization of the property proved in Art. 89.

110. To determine the value of the coefficient of x in the

equation y^— ^a'x.

From Art. 105 we have
sin.

fi 2a

cos. /3
~~ n '

E
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whence n sin. fi
= 2a cos. /3,

and n* sin.
2j3=4a2

cos.
2

j3,

=4&2
(l-sin. 2

/3),

=4&2-4a2
sin.

2

/3.

Therefore sin.
2

/3

=

^+ 4(^
-

But from the equation to the curve referred to the original

axes we have rt=4#m /

4a2 a
therefore Bin. P=^m+w=j[+tf

and -.—Ta=a+m= a.
sin. p

But m represents the abscissa of the

new origin referred to the original axes

;

hence

a+m=FA'(Art. 87) = a',

or the coefficient of x in the equation

y
2— 4:a

fx isfour times the distancefrom
thefocus to the new origin.

111. To determine the length of the chord drawn through

the focus parallel to the new axis of ordinates.

If through the focus F the line BD be drawn parallel to the

new axis of Y, then, calling x and y the co-ordinates of the

point D, we have

e=A'C=TF=A'F (Art. 99)=

a

7
(Art. 110).

But, by Art. 105, y*= ka'x ;

hence ?/
2= 4taf xa'= ±a'%

or y=%a\
and 2y—^a'\
that is, the coefficient Ota! is the double ordinatepassing through

the focus and corresponding to the diameter which passes

through the origin.

112. Definition. The parameter of any diameter is the

double ordinate which passes through the focus.
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From Art. 110 we see that the parameter of any diameter

is equal to four times the distancefrom the vertex of that di-

ameter to thefocus.

In the equation y^— ^a'x, ka' is the parameter of the diame-

ter passing through the origin.

The parameter to the axis is called the principal parameter,

or latus rectum (Art. 84).

113. To find the polar equation to the parabola, the focus
being the pole.

Let the axis be the initial line. Repre-

sent FP by p , and PFN by 9.

Tkcn PF=PD=BF+FN,
or p — 2a+ p cos. 9;

I whence p(l— cos. 0)=:2tf,

2a

which is the polar equation to the parabola.

114. If 0=180°, then cos. 0=— 1, and the value of p be-

comes
2a

p=TTi
=a=FA.

If = 90°, then cos. 0=0, and the value of p becomes

P=2«=FC.
If 0=0, then cos. 0=1, and we have

2a

the radius vector takes the direction AX, and does not meet

the curve at a finite distance.

115. If the variable angle be measured from the point A to-

ward the right, then we must substitute for 9, 180°— 0, in which

case cos. 0=— cos. 0', and we have

2a

^~l + cos. 0"
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Ex. 1. What is the polar equation of a parabola whose latus

rectum is 10, the pole being at the focus ; and what is the

length of the radius vector for = 60° ?

Ex. 2. The latus rectum of a parabola is 8 inches, and =
135°

; what is the radius vector ?

Ex. 3. The latus rectum of a parabola is 6 inches, and the

radius vector is 10 inches ; determine the value of 0.

Ex. 4. The radius vector of a parabola is 25 inches and 0~
135° ; what is the latus rectum ?

M E^

M"'

^<^
^^ P'

P"

A(
P'"

yR'" R" R' R

116. To determine the area ofa segment included between

an arc of ctparabola and a chordperpendicular to the axis.

Let PAQ be a segment of a parab-

ola, bounded by the curve PAQ, and

the chord PQ perpendicular to the

axis AR. It is required to determine

its area.

Inscribe in the semi - parabola

PAR a polygon PPT". . . . AR, and

through the points P, P', P", etc.,

draw parallels to AR and PR, form-

ing the interior rectangles P'R, P r/
R',

etc., and the corresponding exterior rectangles P'M, P"M', etc.

Designate the former by P, P', P", etc. ; the latter hyp,p',

p", etc., and the corresponding co-ordinates by x, y, a?', y\ etc.

We shall then have

P /R=P /R / xRR /

,

V=y\x-xy
FM=P/M, xffl,

J

p=x'(y-y').

P_y(«-aQ
'

p x\y-y ;

y
K

)

But, since the points P, P', etc., are on the curve, we have

N

the rectangle

or

Also the rectangle

or

Whence

if— ^ax^ y' 2= 4(/,r'
;

whence t//— Jb —
i /a >i

v -v __.-, „/ y
Aa , and x'— -—

.

4#
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Substituting these values in equation (1), we obtain

r_ y
/

(?/-y
/2

) _y+?/_
1

v

p y'Xy-y) v' y'~

In the same manner we find

r ;

, y
f

jp' y
m

ii—1+ ///, etc.

If now we suppose the vertices of the polygons P, P', P ;/

,

etc., to be so placed that the ordinates shall be in geometrical

progression, we shall have

y-tf-y!
etc

so that each interior rectangle has to its corresponding exterior

y
rectangle the ratio of 1+—, to 1.

y
Therefore, by composition,

P+F+P"+ ,etc., y,
j?+jp'+i>"+,etc.,

+y>
that is, the sum of all the interior rectangles is to the sum of

y
all the exterior rectangles as 1 + — to 1.

When the points P, P ;

, P 7/

, etc., are taken indefinitely near,

y
the ratio — approaches indefinitely near to a ratio of equality

;

the sum of the interior rectangles converges to the area of the

interior parabolic segment APR, and the sum of the exterior

rectangles to the area of the exterior parabolic segment AMP.
Designating the former by S, and the latter by s, we have

5=1+1=2,

or S=2s#=f(S+s).
But S + s is equal to the area of the rectangle AMPR; hence

the parabolic segment APR is two thirds of the rectangle

AMPR, or the segment PAQ is two thirds of the rectangle

PMXQ. Hence the area of a parabolic segment cut off by a
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double ordinate to the axis is two thirds ofthe circumscribing

rectangle.

Ex. 1. Determine the area of the parabolic segment cut off

by a double ordinate whose length is 24 inches, the latus rect-

um being 8 inches.

Ex. 2. The area of a parabolic segment cut off by a double

ordinate to the axis is 96, and the corresponding abscissa is 6.

Determine the equation to the curve.

117. By a demonstration like that of the preceding article,

it may be also shown that the area of a parabolic segment cut

off by the double ordinate of any diameter is two thirds of the

circumscribing parallelogram

.

Example. Prove that if two tangents are drawn at the ex-

tremities of any chord of a parabola, the segment cut off from

the parabola is two thirds of the triangle formed by the chord

and the two tangents.
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SECTION VI.

THE ELLIPSE.

118. An ellipse is a plane curve traced out by a point which

moves in such a manner that the sum of its distances from two

fixed points is always the same. The two fixed points are call-

ed the foci of the ellipse.

Thus, if F and F' are two fixed points,

and if the point P moves about F in

such a manner that the sum of its dis-

tances from F and F ;
is always the same,

the point P will describe an ellipse, of

which F and F' are the foci. The dis-

tance of the point P from either focus

is called the focal distance, or the radius vector.

119. Description of the curve. From the definition of an

ellipse the curve may be described mechanically. Thus, take

a thread whose length is greater than the distance FF', and

fasten one of its extremities at F, the other at F ;

. Place the

point of a pencil, P, against the thread, and slide it so as to

keep the thread constantly stretched ; the point of the pencil

will describe an ellipse. For in every position of P we shall

have FP+FT equal to the fixed length of the thread ; that is,

equal to a constant quantity.

120. Definitions. The centre of the ellipse is the middle

point of the straight line joining the foci.

A diameter is any straight line passing through the centre,

and terminated on both sides by the curve.

The diameter which passes through the foci is called the

transverse axis, or the major axis.

The diameter which is perpendicular to the major axis is

called the conjugate axis, or the minor axis.
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The latus rectum is the chord drawn through one of the foci

perpendicular to the major axis.

121. To find the equation to the ellipse referred to its axes.

Let F and F' be the foci, and

draw the rectangular axes CX,
CY, the origin, 0, being placed

at the middle of FF'. Let P be

-X any point of the curve, and draw

PR perpendicular to CX.
Let 2c denote FF 7

, the con-

stant distance between the foci,

and 2a denote FP+FT, the constant sum of the focal distan-

ces. Denote FP by r, FT by r\ and let x and y denote the

co-ordinates of the point P.

Then, since

FP2=PR2+RF2=PR2+ (CR-CF)2

,

we have r2= y
2+ (x— c)\ (1)

Also, PF /2=PR2+RF /2=PR2+ (CR+ CF)\
That is, r'

2 =y*+ (x+ c)\ (2)

Adding equations (1) and (2), we obtain

r
2+ r'

2= 2(y
2+ x2+ c

2

); (3)

and subtracting equation (1) from (2), we obtain

r
/2—r2= 4:Cx,

which may be put under the form

(r
f+ r)(r'—r) = kcx. (4)

But from the definition of the ellipse we have
r'+r= 2a. (5)

Dividing equation (4) by equation (5), we obtain

,
2cx

r —r=-
a

Combining the last two equations, we find

r=a-

cx

a 7

ex

a'

(6)

CO
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Squaring these values, and substituting them in equation (3),

we obtain

2 ^ ^ 2 i 2 i 2

CO

which may be reduced to the form

ay+ (a'-c>2= a\cC- &\ (8)

which is the equation to the ellipse.

This equation may, however, be put under a more convenient

form.

Represent the line BC by b. In the two right-angled trian-

gles BCF, BCF', CF is equal to CF', and BC is common to

both triangles ; hence BF is equal to BF 7
. But, by the defini-

tion of the ellipse, BF+BF /= 2a; consequently BF= a.

Now BC2=BF 2-CF 2

;

that is, b'= a'-c\ (9)

Substituting this value in equation (7), we obtain

aY+ b*tf=a*b\ (10)

a? yQ

or
a*
+

b*
= 1

>

*

(11 >

which is the equation of the ellipse referred to its axes.

This equation is sometimes written

f=^-«n. (12)

122. Points of intersection with the axes. To determine

where the curve cuts the axis of X, make y— in the equation

of the ellipse, and we obtain

x—±a—CA or CA',

which shows that the curve cuts the axis of abscissas in two

points, A and A', at the same distance from the origin, the one

being on the right, and the other on the left ;* and, since 2CA,
or AA', is equal to 2a, it follows that the sum ofthe two lines

drawnfrom anypoint ofan ellipse to thefoci is equal to the

major axis.

If we make x— in the equation of the ellipse, we obtain

y=±b, = CBorCB',
E2
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which shows that the curve cuts the axis of Y in two points,

B and B', at the same distance from the origin.

123. Curve traced through intermediatepoints. If we w7ish

to trace the curve through the intermediate points, we reduce

the equation to the form

b
y=±-Vd

a
~ Jb i

from which we may compute the value of y corresponding to

any assumed value of x.

Example. Trace the curve whose equation is

49?/
2+ 36^= 1764.

Solving the equation for ?/, we have

6 ,

By assuming for x different values from to 7, we obtain

the corresponding values of y as given below.

When x=4,y= ±4.92.

x=5,y=±4:.20.
x= 6,y=+3.09.
x=7, y=±0.

When x— 0,y will equal ±G,

which gives two points, a and a\

one above and the other below

the axis of X. When x—l^y—
± 5.99, which gives the points b

and b '. When x— 2^ ?/=±5.75,

which gives the points c and c\

etc. If we suppose x greater than 7, the value of y will be im-

aginary, which shows that the curve does not extend from the

centre be}rond the value x= 7.

If x is negative, we shall in like manner obtain points in the

third and fourth quadrants, and the curve will not extend to

the left beyond the value x= — 7-

The ellipse is seen to be symmetrical above and below the

axis of x, and also to the right and left of the axis of y.

When^^O, y= ±6.

x— 1, ?/=±5.94.

x=2, y=±5.75.
x=3, y=*5.42.
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124. The circle is a particular case ofthe ellipse. When b

is made equal to a, the equation of the ellipse becomes

which is the equation of a circle ; hence the circle may he re-

garded as an ellipse whose two axes are equal to each other.

125. To find the foci of an ellipse when the ttoo axes are

given. Since BF or BF' is equal to

a (Art, 121), it follows that the dis-

tancefrom eitherfocus to the extrem-

ity of the minor axis is equal to half A

the major axis.

If, then, from B, the extremity of

the minor axis, with a radius equal to half the major axis, we
describe an arc cutting the major axis AA' in F and F', the two

points of intersection will be the foci of the ellipse.

126. Tofind the length of the latus rectum. According to

Art. 121, Eq. 12,

b*

tf= -la?-x
2

).a
Suppose x— c, or CF ; then

v*=X&-<?\

where y is the ordinate at the point F.

Eq.9, '

<t—e=&\
hence we have

or a : b : : b : y,

and 2a :2b:: 2b: 2v.

But by Art. 121,

But 2y here represents the double ordinate drawn through

the focus, and is called the latus rectum (Art. 120) ; hence the

latus rectum ofany ellipse is a thirdproportional to the ma-
jor and minor axes.
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127. Equation of the ellipse in terms of the eccentricity.

The fraction — , which represents the ratio of CF to CA, or the
a

distance from the centre to either focus, divided by half the

major axis, is called the eccentricity of the ellipse. If we rep-

resent the eccentricity by 0, then

c
-= e, or c=ae.

But we have seen that &=c£—VL

;

hence a2—

5

2= aV,

h%
1 »or —=z±—e.

a"

Making this substitution, the equation of the ellipse becomes

which is the equation in terms of the eccentricity.

128. To find the distance ofany point on the curve from
eitherfocus. Equations (6) and (7) of Art. 121 are

ex
r=a+-,

exT—a—.
a

Substituting e for - these equations become

r'=a+ex,
r=a—ex,

which equations represent the distance of any point on an el-

lipse from either focus.

Multiplying these values together, we obtain

rr
r— c^— <?V,

which is the value of the product of the focal distances.

The equation of an ellipse may assume forms differing from
those of Art. 121, in consequence of multiplication or division

by a constant, or of transposition. Thus, a?
u+ 4y

2= 7; ?/
3= 25

— 2x2

; ±(x'
i+ y'2

) = 7+x% are equations of ellipses referred to

the centre and axes.
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Ex. 1. Trace the curve whose equation is 3^2+ 5?/
2 =:15.

Ex. 2. In a given ellipse, half the sum of the focal distances

is 4, and half the distance between the foci is 3 ; what is the

equation to the ellipse ?

Ex. 3. In a given ellipse, the sum of the focal distances is 10,

and the difference between the squares of half that sum and

half the distance between the foci is 1G ; what is the equation

to the ellipse ?

Ex. 4. What is the eccentricity of the ellipse whose equation

is9z2+ 16?/
2= 144?

Ex. 5. Trace the curve whose equation is x2+ 4:y*=zl6.

Ex. 6. Trace the curve whose equation is 3^2+ 4?/
2
=:120.

Ex. 7. What are the eccentricities of the ellipses of examples

5 and 6 ?

129, To find the equation of the ellipse when the origin is

f
at the vertex ofthe major axis. The
equation of the ellipse when the ori-

gin is at the centre is

fj^-x\ (1)

If the origin is placed at A', the or-

dinates will have the same value as

when the origin was at the centre, but the abscissas will be

changed. If we represent the abscissas reckoned from A' by

x', we shall have CR=A'R- A'C,

or x=x'—a.
Substituting this value of x in equation (1), we have

which is the equation of the ellipse referred to the vertex A'.

130. Iielation of ordinates to the major axis. If the last

equation be resolved into a proportion, we shall have

y
1

: (2a—x)x: :b*:a*.

Xow 2a represents the major axis AA ;

; and since x repre-
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sents A'E, 2a— x will represent AE; therefore (2a—x)x repre-

sents the product of the segments into which the major axis is

divided by the ordinate PE. Hence we have, the square of
any ordinate to the major axis ofan ellipse, is to theproduct

of the segments into which it divides that axis, as the square

of the minor axis, is to the square of the major axis.

If we draw a second ordinate P'E' to the major axis, we
shall have PE2

: A'E x EA : : ¥ : a
2

: : P'E72
: A'E' x E'A,

or PE2
: P'E'

2 ::A'Ex EA : A/E / x E'A

;

that is, the squares ofordinates to the major axis ofan ellipse

are to each other as the products of the segments into which

they divide that axis.

131. Ordinates to the minor axis. The equation to the el-

lipse, Art. 121, Eq. 10, may be put under the

form

or a* \b
2

\:x* \(b+y)(b-y).

Now y represents CE; hence b + y repre-

sents B'E, and b— y represents BE. Also x

represents PE, which may be called an or-

dinate to the minor axis. Hence we have the square ofany
ordinate to the minor axis ofan ellipse, is to the product of
the segments into which it divides that axis, as.the square of
the major axis, is to the square of the minor axis.

Example. The major axis of an ellipse is 12 inches, and the

curve passes through the two points x= 4-, y— 0, and x~—^,
y— 0) required the equation of the ellipse.

132. An ordinate to the major axis of an ellipse is to the

corresponding ordinate of the circumscribed circle, as the mi-

nor axis is to the major axis.

Let a circle be described on AA' as a diameter, and let the

ordinate PE of the ellipse be produced to meet the circumfer-

ence of the circle in P'.
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The equation.of the ellipse when

the origin is at the centre (Art. 121,

Eq. 12) is

^=^,- ajS)=^-aj)(^+ a?)- A
But {a— x)(a+x) represents ARx
A'R ; hence we have

PR2 _V_

ARxA'R-V
But P'R'=AR x A'R (Geom., B. IV., Pr. 23, Cor.) ; hence

PR2 V

or

P'R9~aa
3

FB:FB:;ft:a::2&:2fe

133. An ordinate to the minor axis of an ellipse is to the

corresponding ordinate of the inscribed circle, as the major

axis is to the minor axis.

Let a circle be described on BB' as a di-

ameter, and let the ordinate PR of the el-

lipse meet the circumference of the circle

in P'.

The equation of the ellipse when the ori-
J

gin is at the centre is

But (b—y)(b+y) represents BRxB'R; hence Ave have

BE2 a

BRxB'B-F
ButBRxB'R=P'R2

; hence

PR2
a"

or

P'R'-J"
PR:P'R::a:3::2a:2J.

134. To find the equation to the tangent at any point ofan
ellipse.

Let the equation to the ellipse he aay*+JV=a'5a
.
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Let x\ y' be the co-ordinates of the point on the curve at

which the tangent is drawn, and x", y" the co-ordinates of an

adjacent point on the curve. The equation to the secant line

passing through the points x\ y' and #", y" (Art. 40) is

'y-y'=P^,(x-x'). (1)

Now, since the points x', y' and x", y" are both on the ellipse,

we must have a'y
n+JV2= a

2
5

a

,

and fly"+JY"=«V;
therefore, by subtraction, a>

{7/"
i-yn

)+ b\xm-x'i

)-0,
y"-y' tf x"+x'

or // /— —" o • // • /•

x —x a y +y
Substituting this value in equation (1), the equation of the

secant line becomes

y-^ s=
"l'yw+F

(<B"a0 (2)

The secant will become a tangent when the two points coin-

cide, in which case

x r— x f

\ and y
f —y'\

Equation (2) will then become

Vx'
y-yr--^x~x')> (

3
)

which is the equation to a tangent at the point x\ y\

Clearing this equation of fractions and transposing, we ob-

tain cfyy'+ tfxx^ay^+ tfx"
;

hence a'
i

yy'+ b'
i

xx'= a'
2

b% (4)

which is the simplest form of the equation to the tangent line.

135. Points where the tangent cats the axes. In equation

(4) of the last article, x and y are

co-ordinates of any point of the tan-

gent line. Make y= 0, in which

case #= CT, and we have

IfXX''— a^Tf';

that is,
~x''
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But x' is CE ; hence CR . CT= C

A

2
.

If from CT we subtract Cli or a?', we shall have the subtangent

a* , cf-x'*
~KY= -,-x

X x

Since the subtangent is independent of the minor axis, it is the

same for all ellipses which have the same major axis ; and

since the circle on the major axis may be considered as one of

these ellipses, the subtangent is the same for an ellipse and its

circumscribing circle.

To determine the point in which the tangent intersects the

axis of Y, we make x=0, which gives

y
Therefore CN.CT'^CB2

.

136. To draw a tangent to an ellipse through a given point.

Let P be the given point on

the ellipse. On AA;
describe

a circle, and through P draw
the ordinate PR, and produce

it to meet the circumference of

the circle in P'. Through P'

draw the tangentP ;

T, and from

T, where the tangent to the cir-

cle meets the major axis pro-

duced, draw PT ; it will be a tangent to the ellipse at P (Art.

135).

137. To find the equation ofa tangent line to the ellipse in

terms ofthe tangent ofthe angle it makes with the major axis.

In the equation of the tangent line (Art. 134, Eq. 3),

Ux'
--y represents the trigonometrical tangent of the angle

which the tangent line makes with the major axis of the el-
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lipse (Art. 40). If we represent tins tangent by m, we shall

have
Vx'

The equation of the tangent line (Art. 134, Eq. 4) was re-

duced to the form
a*yy'+&<$%'=a*b\

Vxx' V
Hence y———ir

-
r Jr
—

ay y
b*

or y—mx+—.

We wish then to express — in terms of m.

Now #V= — cfy'm,

and ay 2+ Vx"=a?b2

;

j**,

Therefore aY+^^-^aV.
Hence y'\a*m*+V)=b\

and -p= ± Vcfm*+ V\

Hence the equation to the tangent may be written

y=mx± 'y/cfm*+ b
2
.

Hence the straight line whose equation is

y=mx± Vcc
2m2+ b%

touches the ellipse whose equation is a?y
2 +b'2x2— a?b'

i

.

Since m in this equation is indeterminate, it may assume

successively any number of values. The corresponding straight

lines wT
ill be a series of tangents to the ellipse. The double

sign of the radical shows, moreover, that for any value of m
there are two tangents to the ellipse parallel to each other.

Ex. 1. In an ellipse whose major axis is 50 inches, the ab-

scissa of a certain point is 15 inches, and the ordinate 1G inch-

es, the origin being at the centre. Determine where the tan-

gent passing through this point meets the two axes produced.

Ans. Distance from the centre on the axis of X, = 41§ inch-

es ; on the axis of Y, =25 inches.
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Ex. 2. Find the angle which the tangent line in the preced-

ing example makes with the axis of X. Am. 30° 57'.

Ex. 3. On an ellipse whose two axes are 50 and 40 inches,

find the point from which a tangent line must be drawn in or-

der that it may make an angle of 35° with the axis of X.

Ex. 4. Find the equations of the two lines which touch the

ellipse 25y
2+ lG t#

2= 400, and which make an angle of 135° with

the axis of X. jLnSt y— _#± VS.
138. To find the equation to the normal at anypoint ofan

ellipse.

The equation to a straight line

passing through the point P, whose

co-ordinates are x\ y' (Art. 38), is

y-y'= m(x-x'); (1)

and, since the normal is perpendic-

ular to the tangent
;
we shall have

(Art. 45) !m— t.—ml
But we have found for the tangent line, Art. 137,

5Vm —-

Hence on—

ay
ay
Vx"

Substituting this value in equation (1), we shall have for the

equation of the normal line

ah/
(2)y-y

' lfx^
X ~~ X ^

where x and y are the general co-ordinates of the normal line,

and x ', y' the co-ordinates of the point of intersection with the

ellipse.

139. Points ofintersection with the axes. To find the point

in which the normal cuts the major axis, make y—0 in equa-

tion (2), and we have, after reduction,

GN, or x— —x .
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If we subtract .this value from CE, which is represented by a?',

we shall have the subnormal

a

To find the point in which the normal cuts the minor axis,

make x—0 in equation (2), and we have

140. Distancefrom thefocus to thefoot ofthe normal. If

a?-U
wre put e* for

a
(Art. 127), we shall have

GN"=sV.
If to this we add F'C, which equals c or ae (Art. 127), we have

F'N"

=

ae+ e*x'=£^+ *#')>

which is the distance from the focus to the foot of the normal.

Ex. 1. In an ellipse whose major axis is 50 inches, the ab-

scissa of a certain point is 15 inches, and the ordinate 16 inch-

es, the origin being at the centre. Determine wThere the nor-

mal line passing through this point meets the two axes.

An$. Distance from the centre on the axis of X, =
5-J

inch-

es ; on the axis of Y, = 9 inches.

Ex. 2. Find the point on the curve of an ellipse whose two

axes are* 50 and 40 inches, from which, if an ordinate and nor-

mal be drawn, they will form with the major axis a triangle

whose area is 80 inches.

141. The normal at any point ofan ellipse bisects the an-

gleformed by lines drawnfrom thatpoint to thefoci.

Let PT be a tangent to an el-

lipse, and PF, PF' be lines drawn

from the point of contact to the

foci. Draw PJST bisecting the an-

gle FPF'. Then, by Geom., Bk.

IV., Pr. 17,

FP:FP::EN:FNj
or by composition,
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FP+FT : FF' : : FT : F'N. (1)

But FP+FT= 2a.

Also FF /= 2c=2ae\Avt 127),

and FT=a+ex (Art. 128).

Making these substitutions in proportion (1), we have

2a:2ae::a+ex: F'N.

Hence F'JST

=

e(a+ ex).

But by Art. 140, e(a+ ex) represents the distance from the fo-

cus F' to the foot of the normal. Hence the line PN
;
which

bisects the angle FPF'
?
is the normal.

142. The radii vectores are equally inclined to the tangent.

Since PN is perpendicular to TT', and the angle FPN is equal

to the angle FTN, therefore the angle FPT is equal to the an-

gle ftt'.

143. Second method ofdrawing a tangent line to an ellipse.

Let P be the point through

which the tangent line is to be

drawn. Draw the radii yectores

PF, PF /

; produce PF' to G,

making PG equal to PF, and

draw FG-. Draw PT perpendic-

ular to FGr, and it will be the

tangent required; for the angle

FPT equals the angle GPT, which equals the vertical angle

FTT'.

144. Every diameter ofan ellipse is bisected at the centre.

Let PP' be a straight line drawn

through the centre of the ellipse,

and terminated on both sides by the

curve ; it will be divided into two

equal parts at the point C. Let x\

y' be the co-ordinates of the point P,

and x"
,
y" those of the point P'.
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Since the points P and P' are on the curve, we shall have

(Art. 121)

and y">~(a<-x'»);

y'2 a?—x' 2

whence, by division, —j^——. m.

But, since the right-angled triangles CPR, CP'R' are similar,

we have
x

x '

IIcnce a^-aW"
Clearing of fractions, we obtain

^'2/72.
tO i/O

,

whence also we have y^—y"*.

Consequently, x"
1+

y

n= x" 2+y
f

or CP 2=CP /2

;

that is, CP=CF;
that is, PP /

is bisected in C.

145. Tangents to an ellipse at the extremities ofa diameter

are parallel to each other.

a2

In Art. 135 we found CT:
a

x
and similarly CT'=— , where x'

x

represents CR, the abscissa of

the point P, and x" represents

CR/, the abscissa of the point P'. But we have found (Art.

144) that x'= xn ; hence CT= CT'. The two triangles CPT,
CP'T', have therefore two sides, and the included angle of the

one equal to two sides and the included angle of the other;

hence the angle CPT= the angle CP'T', and PT is parallel to
p/rjv
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Hence, if tangents are drawn through the vertices of any

two diameters, they will form a parallelogram circumscribing

the ellipse.

146. Iffrom any point in the curve, chords are drawn to

the extremities of the major axis, theproduct of the tangents

of the angles which they form icith it, on the same side, is

equal to ——

.

Let PA, PA 7 be two chords

drawn from the same point, P,

on the ellipse to the extremities

of the major axis.

The equation of the line PA,
passing through the point A,

whose co-ordinates are x' ~a,

t/=0 (Art. 38), is

y=?7i(x—ct).

The equation of PA7

,
passing through the point A 7

, whose

co-ordinates are x"^ — a, y
n— 0, is

y=zm'(x+a).

At the point of intersection, P, these equations are simulta-

neous, and, combining them together, we have

y
1
z=zmm'(x2— ar). (1)

But, since the point P is on the curve, we must have at the

same time

y'—tf-x^-^-a*). (2)

Comparing equations (1) and (2), we see that

,
vmm = ——

,

a''

where m denotes the tangent of the angle PAX, and m' de-

notes the tangent of the angle PA'X.

147. Definition. Two chords drawn from any point in the

curve to the extremities of a diameter are called supplementa-

ry chords.
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148. Supplementary chords in a circle. A circle may be

considered as an ellipse whose two axes are equal to each oth-

er ; hence, in a circle,

mm'=— 1,

which shows that the supplementary chords are perpendicular

to each other (Art. 46).

149. Ifthrough one extremity of the major axis a chord be

drawn parallel to a tangent line to the curve, the supplement-

ary chord will be parallel to the diameter drawn through the

point of contact, and conversely.

Let DT be a tangent to the

ellipse at the point D, and let

the chord AP be drawn parallel

to it ; then will the supplement-

ary chord AT be parallel to

the diameter DD', which passes

through the point of contact, D.

Let a?', y
f

designate the co-ordinates of D. The equation of

the line CD (Art. 31) gives

y
r

whence mr— —,.
x

But the tangent of the angle which the tangent line makes

with the major axis (Art. 137) is

JV
ay

Multiplying together the values of m and m', we obtain

,
vmm = 5,

€T

which represents the product of the tangents of the angles

which the lines CD and DT make with the major axis pro-

duced.

But, by Art. 14G, the product of the tangents of the angles

V
PAT and PAT is also equal to ——. Hence, if AP is paral-

lel to DT, AT will be parallel to CD, and conversely.
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150. Definition. Two diameters of an ellipse are said to be

conjugate to one another when each is parallel to a tangent

line drawn through the vertex of the other.

151. Property ofconjugate diameters. Let DD' be any di-

ameter of an ellipse, and

DT the tangent line drawn

through its vertex, D, and

let the chord AP be drawn

parallel to DT; then, by

Art. 1-19, the supplementa-

ry chord AT is parallel to

DD'. Let another tangent, ET', be drawn parallel to AT ; it

will also be parallel to DD'. Let the diameter EE' be drawn

through the point of contact, E ; then, by Art. 149, AT being

parallel to T'E, the supplementary chord AP, and also its par-

allel DT, will be parallel to EE'. Hence each of the diameters

DD', EE' is parallel to a tangent drawn through the vertex

of the other, and by definition (Art. 150) they are conjugate to

one another.

Since the conjugate diameters DD', EE' are parallel to the

supplementary chords AT, AP, by Art. 146, theproduct ofthe

tangents of the angles which conjugate diameters form with

V
the major axis is equal to ——

.

Ex. 1. In an ellipse whose axes are 10 and 8, a chord drawn

from one extremity of the major axis forms with that axis an

angle whose tangent is 2 ; what angle does the supplementary

chord form ? Arts.

Ex. 2. In an ellipse whose axes are 12 and 8, a chord forms

with the major axis an angle whose tangent is — 3 ; what angle

does the supplementary chord form ? Ans.

Ex. 3. In an ellipse whose axes are 10 and 8, find the angles

which supplementary chords drawn from the point x—1 form
with the major axis. Ans.

Ex. 4. In an ellipse whose axes are 10 and 30, two conjugate

F
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diameters are equally inclined to the major axis. Find the

angle between the two diameters.

152. To determine the co-ordinates ofthejoints ofintersec-

tion ofa straight line with an ellipse.

Let the equation to the ellipse be

ay+ b
2x*=a*b% (1)

and the equation to a straight line be

y=mx+ c. (2)

If this line intersects the ellipse, then we may regard (1) and

(2) as simultaneous equations containing but two unknown
quantities. ' By substitution in equation (1) we obtain

(>
2m2+5>2+ 2a2

c?nx= (b
2- c

2
)a%

the roots of wThich equation give the abscissas of the points

wrhere the straight line meets the curve, and the ordinates may
be found from equation (2). Hence, if the roots be real, the

straight line will cut the ellipse in two points, and it can not

cut the ellipse in more than tw^o points. If the roots are equal,

the points of section coincide, and the line is then a tangent.

If the roots are imaginary, the line falls entirely without the

ellipse.

Ex. 1. Find the co-ordinates of the

points in which the ellipse whose equa-

tion is 25y
2+ 16a?

2 =:400 is intersected

by the line whose equation isy—2x— 5.

Ans. #=+3.7999, or +0.5104;

y= +2.5998, or -3.9792.

Ex. 2. Find the co-ordinates of the

points in wThich the ellipse wThose equa-

tion is £9?/
2— 36#2 =zl764 is intersected by the line wrhose equa-

tion is y=z3x—7, and draw a figure representing the several

quantities.

153. To determine the co-ordinates of the points of inter-

section ofa circle and ellipse.

If the centre of the circle is not restricted in position, there
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may be four points of intersection corresponding to an equa-

tion of the fourth degree. If, however, the centre of the cir-

cle is at one extremity of the major axis, there will be but two

points of intersection, which may be easily found.

Let the equation to the ellipse be

V
y

2 =-£lax—x2

\
CO

and the equation to the circle be

x*+ y
2=r2

;

then, by substitution, we obtain

V
r

2—x2= —(2ax— x2

),

where x will be found to have twTo values, but one of them is

negative, and gives imaginary vqjues for y. There will, there-

fore, be but two points of intersection, both having the same

abscissa, and the ordinates wT
ill differ only in sign.

Ex. 1. Find the co-ordinates of the points in which the el-

lipse whose equation is y
2—^(10x—

x

2

) is intersected by the

circle whose equation is x2
-\-y

2— §k.

Ex. 2. Find the co-ordinates of the points in wrhich the el-

lipse wliose equation is y
2= ^(14:X—

x

2

) is intersected by the

circle wThose equation is x2+ y
2 =zl00.

If the centre of the circle is upon either axis of the ellipse,

there may be four points of intersection.

Ex. 3. Find the co-ordinates of the points where the ellipse

y
2—^_(100— x2

) is intersected by the circles x2

+y2= 64:; y
2+

(#_2)
2= 64, y

*+ (x-8y= 64:, and ?/
2+ (£-20) 2= 64.

The first circle cuts the ellipse in four points, the second cuts

it in three points, the third in two points, and the fourth does

not cut the ellipse.

Ex. 4. Draw a figure representing these curves and their in-

tersections.

154. Having given the co-ordinates of one extremity of a
diameter, tofind those ofeither extremity ofthe diameter con-

jugate to it.
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fl

1 PK

I)

\
N

]^\__ >i'

Let AA7

, BB 7 be the axes of an el-

lipse; DD 7

, EE 7

a pair of conjugate

diameters. Let x', y' be the co-ordi-

A nates of D ; then the equation to CD
(Art. 40) is y

'

* x'
(1)

Since the conjugate diameter EE' is parallel to the tangent at

D, the equation to EE' (Art. 149) is

Vx'
y=- ay7 • X» (2)

To determine the co-ordinates of E and E 7

, we must combine

the equation to EE 7 with the equation to the ellipse, cfy*+5V
=tfV.

Substituting the value of y&om equation (2), we have

Therefore

or

whence

and

ay

x'=
ay*

x=± ay'

Taking the minus sign, in which case x is CN, and combining

with equation (2), we have

a
We thus find the co-ordinates of the point E. The co-ordinates

of the point E' have the same values with .contrary signs.

155. The sum of the squares ofany two conjugate diame-

ters is equal to the sum of the squares of the axes.

Let x', y' be the co-ordinates of D ; then, by Art. 154,

«y . VxnCD 5 +CF :ar"+y"4 +•
V a;

a
=a"^-h\
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156. The rectangle contained by the focal distances of any

point on the ellipse is equal to the square of half the corre-

sponding conjugate diameter.

Let DD', EE' be a pair of conjugate

diameters, and from D draw lines to the

foci, F and F'. Represent the co-ordi-

nates of D referred to rectangular axes

by x\ y.
Then, since CD 2+ CE 2=a2+ 6

2
(Art.

155), we have
CE2=a2+62-CD',

=a>-(l-^>>,

=^2-^V 2
(Art.l27),

=DFxDF'(Art.l28);
that is, the product of the focal distances DF, DF' is equal to

the square of half EE', which is the diameter conjugate to the

diameter which passes through the point D.

157. Theparallelogramformed by drawing tangents through

the vertices of two conjugate diameters is equal to the rectan-

gle of the axes.

Let DD',EE' be two con-

jugate diameters, and let D
ED'E' be a parallelogram

formed by drawing tangents

to the ellipse through the

extremities of these diame-

ters ; the area of the paral-

lelogram is equal to AA' x BB'.

Draw DM perpendicular to EE', and let the co-ordinates of

D referred to rectangular axes be x', y '.

The area of the parallelogram DED'E' is equal to 4CE . DM,
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which is equal to 4CE.CT sin. CTG, which is equal to 4CT.
EN, because EC and DT are parallel.

But CT=- (Art. 135), and EN=— (Art. 154)

;

X CO

a? bx
f

hence the parallelogram DED'E'=4 .
-

.
— = 4a6=AA' x BB'.

Ex. 1. In an ellipse whose axes are 10 and 8, what is the

length of a diameter which makes an angle of 45° with the

axis of x ? What is the length of its conjugate ?

Ans.

Ex. 2. What is the altitude of the circumscribed parallelo-

gram whose sides are parallel to the conjugate diameters of the

preceding example ? Ans.

158. Equation to the ellipse referred to apair of conjugate

diameters as axes.

Let CD, CE be two conjugate semi-

diameters ; take CD as the new axis of

x, CE as that of y; let DCA=a, ECA
=/3. Let x, y be the co-ordinates of

any point of the ellipse referred to the

original axes, and x f

,
y' the co-ordinates

of the same point referred to the new axes.

The equation of the ellipse referred to its centre and axes

(Art. 121) is ay+ 5W= a%\

In order to pass from rectangular to oblique co-ordinates, the

origin remaining the same, we must substitute for x and y in

the equation of the curve (Art. 56) the values

x—x f

cos. a+y' cos. /3,

y=x' sin. a+ y' sin. /3.

Squaring these values of *x and ?/, and substituting in the equa-

tion of the ellipse, we have

x'\a* sin.
2
a + V cos.

2
a) + y'\a* sin.

2

/3 + V cos.
2

/3) +
2x'y'(a'

2
sin. a sin.

fi+ b
2
cos. a cos. /3)= a

2
i

2

,

which is the equation of the ellipse when the oblique co-ordi-

nates make any angles a, j3 with the major axis.
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But, since CD, CE arc conjugate semidiameters, we must

have (Art. 151)
b

2

mm'= tang, a tang. ]3= ——

,

whence a2
tang, a tang. /3+ b

2= 0.

Multiplying by cos. a cos. /3, remembering that cos. a tang, a

= sin. a, we have

a2
sin. a sin. j3+ &

2
cos. a cos.

fi
= 0.

Hence the term containing x'y' vanishes, and the equation be-

comes

x'Xc? sin.
2
a+V cos.

2
a)+ y

f

\a2
sin.

2

j3+ 6
2
cos.

2

j3)= a*b% (1)

which is the equation of the ellipse referred to conjugate diam-

eters.

If in this equation we suppose y
r— 0, we shall have

a*b
2

tAs 2 * 2 7 2 Q •

a Sin. a+ o cos. a

This is the value of CD 2

, which we shall denote by a'
2
.

If we suppose x'= 0, we shall have

y ~^2
sin.

2

/3+ 6
2
cos.

2
/3-

This is the value of CE2

, which we shall denote by b
/2

.

Dividing equation (1) by a2
b

2

, and then substituting for the

coefficients of x'
2 and y'

2
the equal values -75 and -775, we have for

the equation to the ellipse referred to conjugate diameters

xf2
yt2

H— 4-—— 1 •

or, suppressing the accents of the variables, we have

a/2 +
b

/2

159. 7%^ square ofany diameter is to the square ofits con-

jugate, as the rectangle oftheparts into which it is divided by

any ordinate, is to the square of that ordinate.

The equation of the ellipse referred to conjugate diameters

may be put under the form

a
f2

y
2= V\a'2-x2

).
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This equation may be reduced to the

D proportion

an \b'*\\a
n-x"\y\

or (2a')
9

: {2bJ : : (a'+x)(a'-x) : y\

Now 2a' and 2V represent the conju-
>e

/

gate diameters DD', EE' ; and, since x

represents CR, a'+x will represent D'R, and &'—x will repre-

sent DR; also PR represents y; hence

DD'2
: EE /a

: : DR x RD' : PR2
.

If we draw a second ordinate P'R' to the diameter DD', we

shall have

PR2
: DR x RD' : : V* :a":: POT : DR' x R'D',

or PR2
: P'R' 2

: :DR x RD 7

: DR' x R'D'

;

that is, the squares of any two ordinates to the same diameter

are as the products of the parts into which they divide that

diameter.

160. To find the polar equation to the ellipse, thepole being

at one of the foci.

1. Let F be the pole.

Let FP=r; angle PFA=0; then

FR=t> cos. 9.

By Art.128, r= a-ex.

tf=:CR=:CF+ FR,
=ae+r cos. 0.

Therefore r=a—a£—er cos. 0.

r(l + ecos.O)= a(l-e2

),

a(l-e*)
fp——- —

1 + e cos. 0'

which is the required equation when 6 is measured from the

radius to the nearer vertex.

2. Let F' be the pole.

Let FT=// PF'A=0'; then F/E=r/
cos. 0'.

By Art.128, r'=a+ex.
But &=CR=E'K-F'C,

— r' cos. O'—ae.

R/
A

But
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Therefore r'= a+er' cos. O'—ae2

.

Hence r\l—e cos. 0')= a(l— e
2

) y

or ^-i-^cos.r
which is the required equation when 0' is measured from the

radius to the remote vertex.

Ex. 1. The axes of an ellipse are 50 and 40 inches, and the

radius vector is 12 inches. Determine the value of 0.

Ans. 56° 15'.

Ex. 2. The axes of an ellipse are 50 and 40 inches, and is

equal to 36°. Determine the radius vector.

• Ans. 10.771 inches.

Ex. 3. In an ellipse whose major axis is 50 inches, the radius

vector is 12 inches, and 9 is 36°. Determine the minor axis

of the ellipse. Ans. 41.67 inches.

161. Any chord which passes through thefocus ofan ellipse

is a thirdproportional to the major axis and the diameter

parallel to that chord.

Let PP ; be a chord of an ellipse

passing through the focus F, and let / / N^p

DD' be a diameter parallel to PP'. J

By Art. 160, TF=r=^P-^-h .J ' 1+ 6 cos.

To find the value of FP', we must

substitute for 0, 180° + 0, and we obtain

0(1-6*)
FP'= *>'=:

1—e cos. 6'

Hence ?F'=r+r'=
,

2ai
l \. (1)1—e cos. v '

But, by Art. 158, „«,
CD"

a2

sin.*d+ b* cos.'d*

aa
sin.

20+(a2-aV)cos. a (Art 127)
'

a'b*

V-aVcos.*0'
F2
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a\l-e*)

~l-£2
cos.

2 0'

Comparing equations (1) and (2), we find

_> 2CD2 4CD2

pp — =-o—

;

a 2a '

that is, AA':DD'::DD':PP',
or PP' is a third proportional to AA' and DD'.

162. Definition. The parameter of any diameter is a third

proportional to that diameter and its conjugate.

The parameter of the major axis is called the principal pa-

2V
rameter, or latus rectum, and its value is — (Art. 126). The

2a2 a
parameter of the minor axis is -y-. The latus rectum is the

double ordinate to the major axis passing through the focus

(Art. 126). Now, since any focal chord is a third proportional

to the major axis and the diameter parallel to that chord, and

since the major axis is greater than any other diameter, it fol-

lows that the major axis is the only diameter whoseparameter

is equal to the double ordinatepassing through thefocus.

163. Definition. The directrix of an ellipse is a straight

line perpendicular to the major axis produced, and intersecting

it in the same point with the tangent drawn through one ex-

tremity of the latus rectum.

Thus, if LT be a tangent drawn through one extremity of

the latus rectum LI/, meeting the major axis produced in T,

and NT be drawn through the point of intersection perpendic-

ular to the axis, it will be the directrix of the ellipse.

The ellipse has two directrices, one corresponding to the fo-

cus F, and the other to the focus F'.

164. The distance ofanypoint in an ellipsefrom eitherfo-

cus is to its distancefrom the corresponding directrix, as the

eccentricity is to unity.
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Let F be one focus of an

ellipse, NT the corresponding

directrix ; F' the other focus,

and N'T' the corresponding

directrix. Let P be any point

on the ellipse ; x, y its co-or-

dinates, the centre being the origin. Join PF, PF', and draw

NPN' parallel to the major axis, and PB perpendicular to it.

By Art. 135, CT=-=-.

Hence, subtracting CB or x,

e e

But, by Art. 128, r=FF=a-ex.
Hence *.BT, or <?.PN=PF;
or, PF:PN::<?:1.

In like manner, we find that

PF':PN'::*:i.

165. To find the area ofan ellipse.

On AA', the major axis of an el-

lipse, let a semicircle be described,

and within this semicircle inscribe a

polygon, AMM'A'. From the ver-

tices of this polygon draw ordinates

to the major axis, and join the points in which they intersect

the ellipse, thus forming a polygon ANN'A', having the same

number of sides.

Let Y, Y', etc., denote the ordinates of the points M, M', etc.,

and let y, y ', etc., denote the ordinates of the points N, N', etc.,

corresponding to the same abscissas x, x\ etc.

Y+Y'
The area of the trapezoid RMIFE^—^

—

(x— x'),

y-\-y
r

and the area of the trapezoid KN^B/— '
' (x—

x

f

).

Hence EMM'B' : ENN'E' : : Y+ Y' : y+y
f
.
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But, by Art. 132, Y:y::a:b;
also Y' : y' : : a : b.

Whence Y+ Y' :y+y' : :a: b.

Therefore RMM'R7

: RNN'R' : : a : b.

In the same manner it may be proved that each of the trap-

ezoids composing the polygon inscribed in the circle, is to the

corresponding trapezoid of the polygon inscribed in the ellipse,

as a is to b ; hence the entire polygon inscribed in the circle is

to the polygon inscribed in the ellipse, as a is to b ; and this

will be true whatever be the number of sides of the polygons.

If now the number of sides be indefinitely increased, the

areas of the polygons will become equal to the areas of the

semicircle and semi-ellipse respectively, and we shall have the

first is to the second as a is to b ; or, denoting the area of the

circle by S, and that of the ellipse by s
y
we shall have

S : s : : a : b ; that is, s= -S.

But the area of a circle whose radius is a is represented by

7iV; hence • s— irab;

or the area of an ellipse is equal to n times the rectangle de-

scribed upon its semi-axes.

166. Since irab— -vArV^^: Vira* x 7rb% we find that the area

of an ellipse is a mean proportional between the areas of its

circumscribed and inscribed circles.

Ex. 1. Determine the area of an ellipse whose two axes are

24 and 18 inches.

Ex. 2. The area of an ellipse is 40 square inches, and the la-

tus rectum is 4 inches ; required the axes of the ellipse.

Ex. 3. The axes of an ellipse are 40 and 50 ; find the areas

of the two parts into which it is divided by the latus rectum.
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SECTION VII.

THE HYPERBOLA.

167. An hyperbola is a plane curve traced out by a point

which moves in such a manner that the difference of its dis-

tances from two fixed points is always the same. The two

fixed points are called thefoci of the hyperbola.

Thus, if F and F' are two fixed points, and if the point P
moves about F in such a manner that

the difference of its distances from F
and F' is always the same, the point P
will describe an hyperbola, of which

F and F' are the foci.

If the point P' moves about F' in

such a manner that P'F—P'F 7
is al-

ways equal to PF'— PF, the point P'

wT
ill describe a second portion of the curve similar to the first.

The two portions are called branches of the hyperbola.

The distance of the point P from either focus is called the

focal distance, or the radius vector.

168. Mechanical description of the curve. From the defi-

nition of an hyperbola the curve may be described mechanic-

ally. Take any two points, as F and

F'. Take a ruler longer than the

distance FF', and fix one of its ex-

tremities at the point F 7

so that the

ruler may be turned round this point

in the plane of the paper. Take a

thread shorter than the ruler, and

fasten one end of it at F, and the

other to the end M of the ruler. Then move the ruler on its
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pivot at F'
3
while the thread is kept constantly stretched by a

pencil pressed against the ruler ,• the curve described by the

point of the pencil will be a portion of an hyperbola. For in

every position of the ruler, the difference of the distances from

the variable point P to the two fixed points F and F' will al-

ways be the same, viz., the difference between the length of the

ruler and the length of the thread.

If the ruler be turned and move on the other side of the

point F, the other part of the same branch may be described.

Also, if one end of the ruler be fixed at F, and that of the

thread at F', the opposite branch of the hyperbola may be de-

scribed.

169. The centre of the hyperbola is the middle point of the

straight line joining the foci.

A diameter is any straight line passing through the centre,

and terminated on both sides by opposite branches of an hy-

perbola.

The diameter which, when produced, passes through the foci,

is called the transverse axis.

The latus rectum is the chord drawn through one of the foci

perpendicular to the transverse axis.

170. Tofind the equation to the hyperbola.

Let F and F ; be the foci, and draw the rectangular axes CX,
CY, the origin C being placed at the

middle of FF'. Let P be any point

of the curve, and draw PR perpen-

dicular to CX.
Let 2c denote FF ;

, the constant

distance between the foci, and let 2a

denote FT—FP, the constant dif-

ference of the focal distances. De-

note PF by r, PF' by r'
}
and let x and y denote the co-ordinates

of the point P.

Then, since FP 2=PR2 +RF=PR2+ (CR- CF)a

,
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we have 7'*=y*+ (x— c)\ (1)

Also, PF /2=PE2+EF /2=PE2+ (CE+ CF) 2

;

that is, r'*=tf+(x+c)*. (2)

Adding equations (1) and (2), we obtain

r*+ r'
2= 2(?/*+ x*+ c>); (3)

and subtracting equation (1) from (2), we obtain

which may be put under the form

(r'+ r)(r'—r)— ±cx. (4)

But, from the definition of the hyperbola, we have

r'-= r—2a.

Substituting this value in equation (4), we obtain

2cx

a

Combining the last two equations, we find

r=-a+-. (6)

Squaring these values, and substituting them in equation (3),

we obtain

which may be reduced to the form

(c
3-a>2-^y=:a2

(c
2-a2

), (7)

which is the equation to the hyperbola.

If we put V— &^- #2

, the equation becomes

Vx*-ay= c?b\ (8)

x2
if

tf-ih1
' (°)

which is the equation to the hyperbola referred to its centre

and transverse axis.

This equation is sometimes written

pJ^rltf). (io)

The equation to the ellipse becomes the equation to the hy-
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perbola.by writing — &
a
for 5

2

; and we shall find that the hy-

perbola has many properties similar to those of the ellipse.

171. Points of intersection with the axes. To determine

where the curve cuts the axis of X, make y=0 in the equation

to the hyperbola, and we obtain

x=dza=:GAor CA',

which shows that th$ curve cuts the axis of abscissas in two

points,A and A 7

, at the same distance from the origin, the one

being on the right, and the other on the left ; and, since 2CA,
or AA',is equal to'2a, it follows#that the difference of the two

lines drawnfrom any point of an hyperbola to the foci, is

equal to the transverse axis.

If we make x=0 in the equation of the hyperbola, we ob-

tain

which shows that the hyperbola does not intersect the axis CY.

172. If with A or A' as a centre, and a radius equal to CF,

we describe a circle cutting the axis of y in two points, B and

B', we shall have

CB2=BA2-CAa

that is, £=CBorCB'.
The line BB' thus determined is called the conjugate axis of

the hyperbola.

173. Figure ofthe hyperbola determined. In equation (10),

Art. 170, let x be numerically less than a ; then the values of y
are imaginary; therefore no point of the hyperbola is nearer

the axis of y than ±.a.

Let x be numerically greater than a; then for each value of

x there are two equal values of y with contrary signs.

As x increases, the values of y increase $ and when x be-

comes indefinitely great, the value of y becomes so likewise.

The hyperbola therefore consists of two opposite branches,
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extending indefinitely to the right of A and to the left of A',

and symmetrically placed with respect to the axis XCX'.

174. Other points of the curve determined. If we wish to

determine other points of the curve, we reduce the equation

to the form

from which we may compute the value of y corresponding to

any assumed value of x.

Ex. Trace the curve whose equation is 36%*— 49?/'= 1764.

Solving the equation for y, we have

6 ,-*
2/=±^Vtf-49.

If x be assumed less than 7, the corresponding value of y is

imaginary. If we assume for x different values from 7 up-

ward, we obtain the corresponding values of y as given below.

When 0=11, y=± 7.27.

0=12, y=± 8.35.

x=13,y=±; 9.39.

= 14, 2/= ±10.39.

When 0= 7, y=0.
0= 8,y= ±3.32.

0= 9, 2/= ±4.85.

£=10,2/= ±6.12.

When a?=7, y=0, which gives

the point A. When 0=8, y=±
3.32, which gives two points, a and

a\ one above and the other below

the axis of X; when 0=9, 2/= ±
4.85, which gives the points b and

V ; when 0=lO,y =±6.12, which

gives the points c and c\ etc.

If we ascribe to x a negative value, we shall obtain for y the

same pair of values as when we ascribed to the correspond-

ing positive value. Hence the portion of the curve to the left

of the axis of Y is similar to the portion to the right of it.

Moreover, there is no point of the curve between the values

0=+7 and 0=— 7.



138 ANALYTICAL GEOMETRY.

175. To find thefoci ofan hyperbola when the two axes are

given. Since J
2= c

2—

&

2
, we have

c
2 orCF 2=a2+ 3

2=AB 2

;

that is, the distance from the centre to

eitherfocus of an hyperbola is equal to

the distance between the extremities ofits

axes.

If, then, from the centre 0, with a ra-

dius equal to the diagonal of the rect-

angle upon the semiaxes, we describe an arc cutting the trans-

verse axis produced in F and F', the two points of intersection

will be the foci of the hyperbola.

176. To find the length of the latus rectum. According to

Art. 170, eq. 10,

a

Suppose x=c or CF; then

tf=-tf-a>).

But &—c^— V, Art. 172 ; hence we have

or a:b:b:y,

and 2a:2b::2b:2y.

But 2y here represents the double ordinate drawn through the

focus, and is called the latus rectum, Art. 169 ; hence the latus

rectum of any hyperbola is a thirdproportional to the trans-

verse and conjugate axes.

177. Equation to the hyperbola in terms of the eccentricity.

The fraction - , which represents the ratio of CF to CA, or the

distance from the centre to either focus divided by half the

transverse axis, is called the eccentricity of the hyperbola. If

we represent the eccentricity by e, then
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a

But we have seen that

hence

or

c*= a7+ b
2

;

&

Making this substitution, the equation of the hyperbola becomes

which is the equation in terms of the eccentricity.

178. To find the distance of any point on the curvefrom
eitherfocus. Equations (5) and (6) of Art. 170 are

,
ex

a 1

ex

c
a

Substituting e for -, these equations become

r'= ex+a,

r=ex—a,
which equations represent the distance of any point on an hy-

perbola from either focus.

Multiplying these values together, we obtain

rr'=ze*of—a9

3

which is the value of the product of the focal distances.

179. The conjugate hyperbola. Suppose an hyperbola to be

described whose foci F and F' are at

the same distance from the centre C
as those of the curve hitherto de-

scribed, but lie upon the axis CY in-

stead of CX, and suppose the differ-

ence of the distances of any point on

the new curve from the two foci is

2b instead of 2a; then, retaining the

same axes of reference as before, we shall have for the new
position of F and F',

FP2=PB'+BF3=PB2+(CB-CF)a

;
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that is r
1=x2+ (y

— c)\

Also, FT2=PR2+F'R2=PR2+ (CR+ CF)2

;

that is, r
n =x*+ {y+c)\

Proceeding as in Art. 170, we find

(<f- V)y
*-

1

V= b\&- V).

Putting a? for c
2—

£

2

, the equation becomes

b*
or tf= tf(?t+ <?),

which is the equation to the new hyperbola.

In this equation, suppose a?=0, and we have y—±.b; that is,

the curve passes through the points B and B', and BB' is the

transverse axis of the new curve.

Suppose y=0, and we have x= ±a>/—^
which shows that the curve does not meet the axis of X, and

AA' is the conjugate axis of the new curve (Arts. 171 and 172).

This new hyperbola is called the hyperbola conjugate to the

former. One hyperbola is therefore said to be conjugate to an-

other, when the transverse and conjugate axes ofthe one hyper-

tola are the conjugate and transverse axes ofthe other hyperbola.

If y*J^-a>)

be the equation of any hyperbola, then

is the equation to the hyperbola conjugate to the former. The
latter equation may be deduced from the former by writing

— a2
for a% and — £

a
for b\

Ex. 1. Trace the curve whose equation is 3#2— 5y
2= 15.

Ex. 2. In a given hyperbola half the difference of the focal

distances is 7, and half the distance between the foci is 9; what
is the equation to the hyperbola?

Ex. 3. What is the eccentricity of the hyperbola whose equa-

tion is 9£2 -10?/2
:=144:?

Ex. 4. What is the equation of an hyperbola whose conjugate

axis is 6 and the eccentricity 1^ ?
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180. Tofind the equation of the hyperbola when the origin

is at the vertex ofthe transverse axis.

The equation of the hyperbola when
the origin is at the centre is

tf—tf-a*). (1)

If the origin is placed at A, the

ordinates will have the same value

as when the origin was at the centre,

but the abscissas will be changed.

If we represent the abscissas reckoned from A by x\ we
shall have CR=AR+AC,
or x—x'-\-a.

Substituting this value of x in equation (1), we have

which is the equation of the hyperbola referred to the vertex A.

181. Relation of ordinates to the transverse axis. If the

last equation be resolved into a proportion, we shall have

y':(2a+x)x::b'i

:a\

Now 2a represents the transverse axis AA'; and since x repre-

sents AR, 2a+ x will represent A'R ; therefore (2a+x)x rep-

resents the product of the distances from the foot of the ordi-

nate PR to the vertices of the curve. Hence we have the

square of any ordinate to the transverse axis ofan hyperbola,

is to the product of its distancesfrom the vertices of the curve,

as the square of the conjugate axis is to the square of the

transverse axis.

If we draw a second ordinate P'R' to the transverse axis, we
shall have

PR2
: AR x A'R : : V : a' : : P'R'2

: AR' x A'R',

or PR2
: P'R'

2
: : AR x A'R : AR' x A'R'

;

that is, the squares of ordinates to the transverse axis of an
hyperbola are to each other as the products of the distances

from thefoot of each ordinate to the vertices of the curve.
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182. The equilateral hyperbola. When b is made equal to

a, the equation of the hyperbola becomes

y*= 2ax+ x* (Art. 180),

or tf=sf~-tf (Art. 170).

The hyperbola represented by these equations is called equi-

lateral or rectangular, and is to the common hyperbola what

the circle is to the ellipse.

Ex. 1. Trace the curve whose equation is y
a= a?

2— 16.

Ex. 2. Trace the curve whose equation is y
2=x3+ 16.

Ex. 3. Trace the curve whose equation is y
2 =zl0x+x\

183. Tofind the equation to the tangent at anypoint of an
hyperbola.

Let the equation to the hyperbola be a*y*— Va?=z—a*b\

Let x\ y
r be the co-ordinates of the point on the curve at

which the tangent is drawn, and #", y" the co-ordinates of an

adjacent point on the curve. The equation to the secant line

passing through the points x', y
r and x'\ y" (Art. 40) is

Eut, since the points x\ y
r and x'\ y" are both on the hyperbola,

we must have a2

y
/2— &

V

2= — (tV,

and a2

y
/,2-b2

x'
/2=-a2

b
2

;

therefore, by subtraction,

a*(y
m
r-y'*)-bXx

m-x'*)=0
}

y"-y' b\ x"+x'

Substituting this value in equation (1), the equation of the se-

cant line becomes 72 „ ,
*

O X -f-X

The secant will become a tangent when the two points coin-

cide, in which case, x'— xn , and y
f —y' r

.

Equation (2) will then become

y-y'-jffi
x~x')> (

3
)

which is the equation to a tangent at the point x\ y
f

.
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Clearing tills equation of fractions, and transposing, we ob-

tain a?yy
r—Vxx r= cfy"

1— &V 2

;

hence a?yy'— Vxx'— —cfb*, (4)

which is the simplest form of the equation to the tangent line.

Vxf

In equation (3), -7-7 represents the trigonometrical tangent
a y

of the angle which the tangent line makes with the transverse

axis of the hyperbola.

184. Points where the tangent cuts the axes. To determine

the point in which the tangent intersects the

axis of X, we make y=0, which gives

a
that is, x~
which is equal to CT. Therefore

CTxCR=CA2
.

If from CR or x f we subtract CT, we shall

have the subtangent

KT=a>'-
a x —a

To determine the point in which the tangent intersects the

axis of Y, we make x=
y
which gives

b
2

which is equal to Ct. Therefore Ct x 0=CBa
.

Hence it follows that if a tangent and ordinate be drawn
from the samepoint of an hyperbola meeting either axis pro-

duced, half of that axis will be a mean proportional between

the distances of the two intersectionsfrom the centre.

Ex. 1. In an hyperbola whose transverse axis is 32 inches,

the abscissa of a certain point is 26 inches, and the ordinate 18

inches, the origin being at the centre. Determine where the

tangent passing through this point meets the two axes produced.

Ex. 2. Find the angle which the tangent line in the preced-

ing example makes with the axis of X.
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185. Tofind the equation to the normal at anypoint ofan
hyperbola. The equation to a straight line passing through

the point P, whose co-ordinates are x\y' (Art. 3S ). is

y—tf=m(x—x : (1)

and since the normal is perpendicular to the tangent, we shall

have (Art ±6)
1m— r»—m

But we have found for the tangent line (Art. 1 v

, W
tn =-i—

:

ay '

hence n»=—j\

Substituting this value in equation (1), we shall have for the

equation of the normal line

where x and y are the general co-ordinates of the normal line,

and x\ y the co-ordinates of the point of intersection with the

hyperbola.

186. Point with the axes. To find the

point in which the normal cuts the tn

Be axis, make y=0 in equation (2), and

we have, after reduction.

CJs =:»= j— .

a
If from CX we subtract CE. which is repre-

sented bv x '. we shall have the subnormal

To find the point in which the normal cuts the ax:

make »=0 in equation rl\. and -we have, after reduction,

which equals C
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187. Distancefrom {hefocus to thefoot of the normal. If

we put c
1

for
a*+ l>

2

a
(Art. 177), we shall have

CN=aV.
If to this we add F'C (see next figure), which equals c or ac,

Art. 177, we have

F'N =zae+eV= *(a + <?#')

,

which is the distance from the focus to the foot of the normal.

Ex. In an hyperbola whose transverse axis is 32 inches, the

abscissa of a certain point is 26 inches, and the ordinate IS

inches, the origin being at the centre. Determine where the

normal line passing through this point meets the two axes.

188. A tangent to the hyperbola bisects the angle contained

by lines drawn from the point of contact to thefoci.

Let PT be a tangent line to the hyperbola, and PF, PF' two

lines drawn from the point of

contact to the foci ; then the an-

gle FPT=FTT.
a'

For CT= -(Art.lS4),
X

and CF=o*(Art.l77);

hence ~FT=ae——=-(cx—a),

a"* ft

and F'T= ae+—=-(ex+a).
x ar J

Therefore FT:F'T::ea—a:ex+a,
::PF:PF /

(Art.l78).

Hence PT bisects the angle FPF' (Geom.,Bk. IY., Prop. 17).

189. If FT be produced to M, and the normal PN be drawn,

it will bisect the exterior angle FPM. For, since PN is per-

pendicular to TT', and the angle FPT is equal to FTT or its

vertical angle MPT', therefore the angle FPN=MPjST; or the

normal bisects the angle included by one radius vector and
the other produced.

G
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190. To draw a tangent to the

hyperbola through a given point

of the curve. Let P be the given

point ; draw the radii vectores PF,

PF' ; on PF' take PG equal to PF,

and draw FGL Draw PT perpen-

dicular to FG, and it will be the

tangent required, for it bisects the

angle FPF;
.

191. Every diameter of an hyperbola is bisected at the cen-

tre. Let PP' be a straight line drawn through the centre of

the hyperbola, and terminated on both sides by the two branch-

es of the curve; it will be divided into two equal parts at the

point C. Let x\ y
f be the co-ordinates of the point P, and

x", y
n
those of the point P'.

Since the points P and P' are on the curve, we shall have

(Art. 170) v

and

y"=-,(x"-a>),

y'"Ax'"-ay,
B. ~ a

whence, by division,

y x"-a'

r
lar,But, since the right-angled triangles CPU, CP'K' are similar,

we have »/ x'

X

hence,
x -x'

n-a?
Clearing of fractions, we obtain

x"=x" 2

;

whence also we have y
f,1 =iy,n .

Consequently, x" + y" =x'"+

y

n
\

or CP 2= CP' 2

;

that is, CP=CP';
that is, PP' is bisected in C.
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192. Tangents to an hyperbola at the extremities ofa diam-

eter are parallel to each other.

Let PP' be a diameter of an hy-

perbola, and let PT, P'T' be tangents

drawn through its extremities ; then

is PT parallel to P'T'.

In Art, 184 we found CT=^,and

a?
for the same reason CT'=— , wThere xT

represents CR, the ab-
x

scissa of the point P, and x" represents CE/, the abscissa of the

point P'. But in Art. 191 we have found that x'—x" \ hence

JT= CT'. The two triangles CPT, CP'T' have therefore two

sides and the included angle of the one equal to twro sides and

the included angle of the other; hence the angle CPT= the

angle CP'T', and PT is parallel to P'T'.

193. Iffrom the extremities ofthe transverse axis two lines

be drawn to meet on the curve, theproduct of the tangents of
the angles which theyform with that axis on the same side is

equal to —.

Let PA, PA' be two lines drawrn from the extremities of

the transverse axis to the same point

P on the hyperbola. The equation

of the line PA passing through the

point A, wThose co-ordinates are x'
'= #,

y'= 0,Ai± 38, is

y—m{x— a).

The equation of PA' passing through

the point A', whose co-ordinates are x'
r
=. — a, 2/"= 0, is

y—m\x-\-a).

At the point of intersection, P, these equations are simultane-

ous, and, combining them together, we have

y'-^mm'^—a?). (1)
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But, since the point P is on the curve, we must have at the

same time

^=^-a2
)(Art.l70). (2)

Comparing equations (1) and (2), we see that

mm ——,
,

where m denotes the tangent of the angle PAX, and ml de-

notes the tangent of the angle PA'X.

194. Definition. Two lines drawn from any point on the

curve to the extremities of a diameter, are called supplement-

ary chords.

195. Supplementary chords in the equilateral hyperbola.

In the equilateral hyperbola a—b, and we have

?n??i'= l,

1
or m= —,

f)m
which shows that the angles formed by the supplementary

chords with the transverse axis on the same side are comple-

mentary to each other (Trig., Art. 28).

196. Ifthrough one extremity ofthe transverse axis, a chord

be drawn parallel to a tangent line to the curve, the supple-

mentary chord will beparallel to the diameter drawn through

thepoint of contact, and conversely.

Let DT be a tangent to the hy-

perbola at the point D, and let the

chord AP be drawn parallel to it

;

then will the supplementary chord

AT be parallel to the diameter

DC, which passes through the

point of contact, D.

Let x f

,
y' denote the co-ordinates

of D. The equation of the line

CD (Art. 31) gives y'= m'x
;
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whence m ——

.

x

But the tangent of the anMe which the tangent line makes

with the transverse axis (Art. 183) is

m—-^—,.
'-'!/

Multiplying together the values of m and ?n', we obtain

mm =-=
i]

cc

which represents the product of the tangents of the angles

which the lines CD and DT make with the transverse axis.

But by Art. 193 the product of the tangents of the angles
7 2

PAX, PA X is also equal to -*. Hence, if AP be parallel to

DT,AT will be parallel to CD, and conversely.

197. The last Proposition is also true when applied to a tan-

gent to the conjugate hyperbola; that is, if through one ex-

tremity of the transverse axis' of an hyperbola a chord be

drawn parallel to a tangent line to the conjugate hyperbola,

the supplementary chord will be parallel to the- diameter

drawn through the point of contact, and conversely.

Let ET' be a tangent to the hyperbola which is conjugate to

the former hyperbola, and let the

chord AT be drawn parallel to ET',

and through the point of contact, E,

let the diameter EE' be drawn ; then

will EE' be parallel to the supple-

mentary chord AP.
Let x", y" denote the co-ordinates

of E. The equation of the line CE,

Art. 31, gives y"=m'V;

whence m"=?-r,.
x

The equation of the conjugate hyperbola (Art. 179) is
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and, proceeding as in Art. 183, we shall find that the tangent

of the angle ET'C is

7)1--

ay
b*

Hence we have mm"=—z*
cr

which represents the product of the tangents of the angles

ECA and ETA.. But this has been found (Art. 196) equal to

the product of the tangents of the angles DCX and DTX, or

PAX. Hence, if AT be parallel to ET', AP will be parallel

to CE, and conversely.

198. Conjugate diameters. Each of the diameters DD', EE'

is thus seen to be parallel to a tangent line drawn through the

vertex of the other diameter. Two diameters thus related are

said to be conjugate to each other. Thus we see that thepro-

duct of the tangents of the angles which conjugate diameters

. V
form with the transverse axis is equal to —.

199. Ofany two conjugate diameters, one meets the original

hyperbola, and the other the conjugate hyperbola.

Let y=mx be the equation to any diameter, and let

ay-bW^-a'b2

be the equation to the hyperbola.

To determine the points in which the diameter intersects the

curve, we must combine these two equations, and we have

or #a= ji i—s- (1)
b —am v J

In like manner, for the conjugate hyperbola we shall find

rf—^- (2)x
-tfm'-b1 ' W

The values of x in equation (1) will be real as long as a
3m2

is less than Z>
2

, but imaginary when a^m2
is greater than b\ In

the former case the diameter intersects the curve, but in the
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latter it does not. The values of x in equation (2) are real

when b
2

is less than a2m2

, but imaginary when b
2

is greater

than a
2m2

.

Now, in the case of conjugate diameters, we have

,
v

, ,.
vmm —— , or m?n =—

.

J
2

£
2

Hence, if m2
be less than — , m' 2

will be greater than — ; in this
CO (t>

case the first diameter meets the original hyperbola, and the

b
2

second the conjugate hyperbola. If m2 be greater than —, m' 2

b
2

a

will be less than — : in this case the first diameter meets the
a '

conjugate hyperbola, and the second the original hyperbola.

200. Having given the co-ordinates of one extremity of a
diameter•, to find those of either extremity of the diameter

conjugate to it.

Let AA', BB7
be the axes of an hy-

perbola, DD', EE 7

a pair of conjugate

diameters. Let x\ y' be the co-ordi-

nates of D ; then the equation to CD
(Art. 40) is

Vy——
. x.u x

(i)

Since the conjugate diameter EE 7

is parallel to the tangent

at D, the equation to EE' (Art. 183) is

Li o / • X»ay (2)

To determine the co-ordinates of E and E', we must combine

the equation to EE 7 with the equation to the conjugate hyper-

bola a2

y
2-b2x2=a2

b
2
(Art. 179).

Substituting the value of y from equation (2), we have, after

reduction,

whence

(Fx'*-a*y'*)tf=ay
2

;

x l

or

ay ay
=

~tfb
2 ^~V

x-~
b

.
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Also, from equation (2) we have

y--

bx!_
:

a'
which are the co-ordinates of the points E and E'. The ab-

scissa of E is positive, and that of E' negative ; hence the upper

sign applies to E, and the lower to E'.

201. The difference of the squares ofany two conjugate di-

ameters is equal to the difference of the squares of the axes.

Let x\ y
f be the co-ordinates of J) ; then, by Art. 200,

CD'-CEW+y"-^—A-J o a
FaT-cfy" at

y
n-lixn

V +
a?

202. The rectangle contained by the focal distances of any
point on the hyperbola is equal to the square ofhalf the cor-

responding conjugate diameter.

LetDD', EE'be a pair of conju-

gate diameters, and from D draw
lines to the foci F and F'; then

DFxDF'=CE5
.

Represent the co-ordinates of D
by x', y'.

Then, since CD 1- 01?= a1-

J

1

(Art 201), we have

CE»=CD'—a'+J*

=xn+-{xn-a?)-a?+V

-(i+j^-rf
=«-a1 (Art 177)
=DFxDF£Lrtl78);

that is, the product of the focal distances DF, DF r
is equal to
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the square of half EE', which is the diameter conjugate to that

which passes through the point D.

203. The parallelogram formed by drawing tangents

through the vertices of two conjugate diameters is equal to

the rectangle of the axes.

Let DD', EE' be two conjugate diameters, and let DED'E'
be a parallelogram formed by drawing

tangents to the hyperbola through the ex-

tremities of these diameters ; the area of

the parallelogram is equal to AA' x BB 7
.

Draw DM perpendicular to EE', and

let the co-ordinates of D be x\ y'.

The area of the parallelogram DED'E'
is equal to 4CE . DM, which is equal to 4CE . CT sin. CTIT,

which is equal to 4CT . EN", because EC and DT are parallel.

(Art. 200). Hence the
a* lx'

a
But CT=-7 (Art. 184), and EN:

X
a* bx'

parallelogram DED'E'=4^ .
— =±ab=AA' x BB'.

x a

204. Equation to the hyperbola referred to any. two conju-

gate diameters as axes.

Let CD, CE be two conj ugate semi-diameters ; take CD as

the new axis of x
9
CE as that of y ; let

DCA= a, and ECA= j3. Let x, y be the

co-ordinates of any point of the hyperbola

referred to the original axes, and x', y
r the

cordinates of the same point referred to

the new axes.

The equation of the hyperbola referred to its centre and

axes (Art. 170) is ay- 1V= - a'b\

In order to pass from rectangular to oblique co-ordinates,

the origin remaining the same, we must substitute for x and y
in the equation of the curve (Art. 56) the values

x—x f

cos. a+y' cos. )3,

y— x f
sin. a+ y' sin. )3.

G2
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Squaring these values of x and y, and stflbstituting in the

equation of the hyperbola, we have

x'\c? sin.
2a-62

cos.'a)+y'V sin.
2

/3-62
cos.

2

/3)

+ 2x'y\a? sin. a sin. j3—V cos. a cos. |3)= — &2
6

2

,

which is the equation of the hyperbola when the oblique co-

ordinates make any angles a, j3 with the transverse axis.

But, since CD, CE are conjugate semidiameters, we must

have (Art. 198)
, „ Vmm = tang, a tang. j3

=—

,

whence a? tang, a tang. ]3— J
2= 0.

Multiplying by cos. a cos. j3, remembering that cos. a tang, a

=sin. a, we have

a2
sin. a sin. j3—V cos. a cos. j3= 0.

Hence the term containing x f

y
r

vanishes, and the equation be-

comes

x'\a%
sin.

2a-&2
cos.

2
a)+2/V sin.

2/3-5 2
cos.

2

j3)= -a2
6

2

,

which is the equation of the hyperbola referred to conjugate

diameters.

If in this equation we suppose y
f— 0^ we shall have

*, ^
b COS. a— a sin. a

This is the value of CD 2

, which we shall denote by a'
2
.

If we suppose x'= 0, we shall have

Now, since we have supposed that the new axis of x meets the

curve, we know that the new axis of y will not meet the curve

(Art 199), so that —a'b'

a'sm. a/3-^cos. s

/3

is not a positive quantity. If we denote it hy — J'
5

, the equa-

tion to the hyperbola referred to conjugate diameters will be

b
nxn-ay=a,tbn

i

or, suppressing the accents on the variables,
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205. The square of any diameter ofan hyperbola is to the

square of its conjugate, as the rectangle under any two seg-

ments of the diameter is to the square of the corresponding

ordinate.

Let DD', EE' be two conjugate diameters of an hyperbola,

and from any point of the curve, as

P, let PR be drawn parallel to EC,

meeting the diameter DD' produced

iiiR.

The equation of the hyperbola re-

ferred to conjugate diameters may
be put under the form

a,Y=5,,
(«

9
--a

,f
).

This equation may be reduced to the proportion

a!
% \V*\\tf—an w

or (2a'Y : (2bJ : : (x+a'){x-a
r

)
: y\

Now 2a' and 2b' represent the conjugate diameters DD',EE';

and since x represents CE, x+a' will represent D'R, and x—a'
will represent DP ; also PR represents y. Hence

DD /2 :EE /2 ::DRxRD':PR\
If we draw a second ordinate P'R' to the diameter DD 7

, we
shall have PR2

: DR x RD' : : b" :a'
2
:: P'R/2

: DR' x RT)',

or PR2
: PR/2

: : DR x RD' : DR' x R'D'

;

that is, the squares ofany two ordinates to the same diameter

are proportional to the rectangles under the corresponding

segments of the diameter.

206. To find the polar equation to the hyperbola, the pole

being at one of thefoci.

1. Let F be the pole.

Let FP=?7 the angle AFP=0;
then FR=r cos. PFR= — r cos. 0.

By Art. 178,

r=ex— a ;

but a>=CR=CF+FR
=ae—r cos. 0.
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Therefore r=ae*— er cos. — a.

Hence r(l+ e cos. 0)= a(e*— 1),

or r^-^ m (!)
1+ e cos. 0' x J

which is the equation required.

2. Let F' be the pole.

Let FP=r7 angle PF'A=0'; then F'R=/ cos. 0'.

By Art. 178, 7*'= <saj+0;

but a=CR=F'R-F'C
=7*' cos. Q'—ae.

Therefore r'— er' cos. 0'— a<?
2+ a.

Hence r'(l - e cos. 0')= a(l- e*)= -afc
1-

1),

or r'=^ L (2)
1— e cos. ' v y

which is the equation required.

207. Form of the hyperbola traced. The form of the hy-

perbola may be traced from its polar equation. In equation

(1), suppose 0=0; then r=a(e—l). If we measure off this

length on the initial line from the pole F, we shall obtain the

point A as one of the points of the curve.

While increases, 1 + e cos. diminishes, and r increases

;

V
and when = 90°, r=—, which determines another point of

the curve.

When becomes greater than 90°, cos. becomes negative,

and r continues to increase until 1 + e cos. = 0, or cos. 0= — -,
e'

when r becomes infinite. Thus, while increases from until

cos. 0=—-, that portion of the curve is traced out which be-

gins at A, and passes on through P to an indefinite distance

from the origin.

When 1 + e cos. becomes negative, r becomes negative, and

we measure it in the direction opposite to that in which we

should measure it, if it were positive. Thus, while increases
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to 1S0°, that portion of the curve is traced out which begins

at an indefinite distance from C in the lower left-hand quad-

rant, and passes through Q to A'.

As increases from 180°, r continues negative, and increases

numerically until 1+ e cos. again becomes zero. Thus the

branch of the curve is traced out which begins at A', and pass-

es on through Q' to an indefinitely great distance from C.

As 6 continues to increase, the value oil + e cos. again be-

comes positive ; r is again positive, and is at first indefinitely

great, and then diminishes. Thus the portion of the curve is

traced out which begins at an indefinitely great distance from

C in the lower right-hand quadrant, and passes on through P'

to A. Thus both branches of the hyperbola are traced out by

one complete revolution of the radius vector.

208. Any chord whichpasses through the focus of an hyper-

bola is a thirdproportional to the transverse axis and the di-

ameter parallel to that chord.

Let PP' be a chord of an hyperbola passing through the

focus F, and let EE' be a diameter par-

allel to PP'.

By Art. 206, PF=.f"
1
^.J ' ±+ e cos.

To find the value of FP', we must sub-

.

stitute for 0, 180°+ 0, and we obtain

a(e
2 ^l)

Hence

FP':

pp ,

1— e cos. 0'

2a(6
2 -l)

1WCOB. 80'

Proceeding as in Art. 161, we find the value of CE2
equal to

Hence pp/

1-£2
COS.'0'

2CE 2 4CE2

a ~" 2a '

that is, AA':EE'::EE':PP',
or PP' is a third proportional to AA' and EE'.
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209. Definition. The parameter of any diameter is a third

proportional to that diameter and its conjugate.

The parameter of the transverse axis is called the principal

parameter, or latus rectum, and its value is— (Art. 176). The

parameter of the conjugate axis is —r-. The latus rectum is

the double ordinate to the transverse axis passing through the

focus (Art. 176). Now, since any focal chord is a third propor-

tional to the transverse axis and the diameter parallel to that

chord, and since the transverse axis is less than any other di-

ameter of the same hyperbola, it follows that the transverse

axis is the only diameter whose parameter is equal to the

double ordinatepassing through thefocus.

In the equilateral hyperbola a= b, and the latus rectum is

equal to either of the axes of the curve.

210. Definition. The directrix of an hyperbola is a straight

line perpendicular to the transverse axis, and intersecting it in

the same point with the tangent to the curve at one extremity

of the latus rectum.

Thus, if LT be a tangent drawn through one extremity of

the latus rectum LI/, meeting the transverse axis in T, and NT
be drawn through the point of intersection perpendicular to

the axis, it will be the directrix of the hyperbola.

The hyperbola has two directrices, one corresponding to the

focus F, and the other to the focus F\

211. The distance ofanypoint in an hyperbolafrom either

focus is to its distancefrom the corre-

sponding directrix, as the eccentricity

is to unity.

Let F be one focus of an hyperbola,

NT the corresponding directrix ; F' the

other focus, and N'T' the corresponding

directrix. Let P be any point on the

hyperbola, x'', y
r

its co-ordinates, the origin being at the centre.
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Join PF, PF', and draw PNN' parallel to the transverse axis,

and PR perpendicular to it.

By Art. 184, CT=-=-;
C €>

hence CK-CT=PN=£'--
e

ex'—

a

e

But, by Art.173, r=ex'-a=FF;
hence <?.PN=PF,
or PF:PN::*:1.

In like manner we find that

PF':PN'::*:1.

212. Conic sections compared. In Art. 82 the parabola was

defined to be a curve every point of which is equally distant

from the focus and directrix, while in the ellipse and hyper-

bola these distances have been found to be in the ratio of the

eccentricity to unity. In the ellipse, the eccentricity, being

equal to - (Art. 127), is less than unity, while in the hyperbola
Cb

(Art. 177) it is greater than unity. In each of these curves the

two distances have to each other a constant ratio. In the par-

abola this ratio is unity, in the ellipse it is less than unity, while

in the hyperbola it is greater than unity. These curves, being

the sections of a cone made by a plane in different positions,

are called the conic sections ; so that a conic section may be

defined to be a curve traced out by a point which moves in

such a manner that its distance from a fixed point bears a con-

stant ratio to its distance from a fixed straight line. If this

ratio be unity^ the curve is called a parabola ; if less than unity,

an ellipse ; and if greater than unity, an hyperbola ; and all

the properties of these curves may be deduced from this defi-

nition.
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ON THE ASYMPTOTES OF THE HYPERBOLA.

213. It was shown in Art. 199 that if a line drawn through

the centre of an hyperbola meets the curve, ma must be less
7 3 Z

than —, or m<±-/ and if the line meets the conjugate hy-

perbola, m2 must be greater than —, or ra> ±-.

Let AA'j BB' be the two axes of an hyperbola, and through

p^ L the vertices A, A', B, B' let lines be drawn
perpendicular to these axes; and letDD',

EE', the diagonals of the rectangle thus

formed, be indefinitely produced.

Then, since -^ A 7
^^^. DA b

tans;. DCX=-7-tt=-,
to AC a?

tang.E,CX=^=-A° AC a?

it follows that the lines CD, CE' will never meet the curve at

any finite distance from C.

The lines CD, CE', indefinitely produced, are called asymp-

totes of the hyperbola.

and

214. Definition. An asymptote of any curve is a line which

continually approaches the curve, coming indefinitely near to

it, but meets it only at an infinite distance from the origin.

Since the lines DD' and EE' pass through the centre, and

are inclined to the transverse axis at an angle whose tangent

:-, their equation will be
h
z-X.
a

215. The diagonals of the rectangle formed by lines drawn
through the extremities of the axes and perpendicular to the

axes, are asymptotes to the curve, according to the definition

ofArt. 214.
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Let the equation to the hyperbola (Art. 170) be

The equation to the line CL, the diagonal of the rectangle

DED'E',is bx
J a

LetMPR be an ordinate meeting the hyperbola in P, and the

straight line CL in M ; then, if CR be denoted by x, we have

PR=-V^W,
a

bx
and MK=—

.

7 a

Hence MP =-(<*?- Vxu-d2

)

b a2

a x+ Vvf—cf
ab

x-{- Vx'—a?
If, then, the line MR be supposed to move from A parallel

to itself, the value of x will continually increase, and the dis-

tance MP will continually diminish ; and if we suppose the

point P of the curve to recede to an infinite distance from the

origin, MP will become zero. *

In like manner the line CL 7

, whose equation is y—~-—

>

meets the curve below the transverse axis at an infinite dis-

tance from the origin.

216. Asymptote to the conjugate hyperbola. The line CL is

also an asymptote to the conjugate hyperbola; for, let PR be

produced to meet the conjugate hyperbola in P'; then (Art. 179)

P'R=-V^+^".
a

b.
Hence P'U=-(Vtf+ a*--x)

aK 2 }

aa

Vx^+d'+ x
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Therefore, if CR or x be indefinitely increased, P'M will be

indefinitely diminished, and hence CL is an asymptote to the

conjugate hyperbola.

217. An asymptote may be considered as a tangent to the

hyperbola at apoint infinitely distantfrom the centre.

The equation to a tangent at any point a/, y
f

of the curve

(Art. 183) is a?yy
f- Vxxf= - a?b%

Vxx' b
1

or y—-1
—
r——. (1)«y y

Now y'z^dz-i/x'*
a

a .

If x r becomes indefinitely great, then a? vanishes when com-

pared with a?
/2

, and we have 7

* a
Substituting this value in equation (1), the equation to the

tangent, when the point #', y' is infinitely distant, becomes

Vxx' a ab2

y~~~ a2 bx
f

~~bx
f

bx ab

a x

But when x' is infinite, -7=0

;

h\rp

hence V—^—

>

J a J

which is the equation to the asymptote (Art. 214). Hence the

asymptote is a tangent to the curve at a point infinitely distant

from the centre.

218. The asymptotes are the diagonals of every parallelo-

gramformed by drawing tangents through the vertices of two
conjugate diameters.

Let DED'E' be a parallelogram formed by drawing tangents

to the hyperbola through the vertices of two conjugate diam-

eters DE>', EE'; the diagonals Tt, TV will be asymptotes of

the curve.
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Let x\ y' be the co-ordinates of the point D ; then the co-

ordinates of E, the extremity of the

conjugate diameter (Art. 200), are

ay' _ bx'
-T- and —

.

o a
Draw the diagonal DE, and it will

bisect CT in N (Geom., Bk. L, Prop. 33).

The co-ordinates of N are

i(,+f) and i^).
Hence we have

y'+—
h

tang. ]STCX= „ which equals -.

But - is the tangent of the angle which the asymptote makes

with the transverse axis (Art. 214) ; hence CT coincides with
one of the asymptotes.

Also, since the diagonal DE passes through the points

, , n ay' bx'
#,2/',and-|-, —

,

the tangent of the angle which it makes with the transverse

axis (Art. 40) is %x'

b
h

1. which equals — -.
ay''

L a

But —-is the tangent of the angle which the other asymptote
a

makes with the transverse axis ; hence DE is parallel to the

other asymptote. And since DT 7E 7C is a parallelogram, DT 7

=E'C, which equals EC ; and since DT 7

is parallel to EC, ED
is parallel to CT 7

. Hence TV is the other asymptote.

219. Hence we see that the line joining the extremities of
two conjugate diameters is parallel to one asymptote, and is

bisected by the other.
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Also, ifa tangent line he drawn at anypoint ofan hyper-

bola, the part included between the asymptotes is equal to the

parallel diameter.

Moreover, if x and y are the co-ordinates of any point on the

asymptote referred to two conjugate diameters, then we shall

have *

y : x : : V : a',

Vx

which is therefore the equation to the asymptote referred to a

pair of conjugate diameters.

220. Ifany chord of the hyperbola be produced to meet the

asymptotes, the parts included between the curve and the as-

ymptotes will be equal.

Let PP' be any chord of the hyperbola, and let it be pro-

duced to meet the asymptotes in M and M'

;

then will PM be equal to P'M'.

Draw CY, the semidiameter to the conju-

gate hyperbola, parallel to PP', and draw CX
conjugate to CY ; then PP' is a double ordi-

nate to CX, and is bisected in R.

The equation to the hyperbola referred to

CX, CY (Art. 204) is

y=±jVtf=*% (1)

and the equation to the asymptotes (Art. 219) is

b
r

y=±^x
- (

2
)

Now to the same abscissa CR there correspond (from eq. 1)

two equal ordinates wTith opposite signs ; hence we have

PR=P'R.
Also, from eq. 2, MR=M'R.
Therefore, by subtraction, MP=MT',
as was to be proved.

If the tangent line TT' be drawn parallel to MM', the trian-

gles CTT, CMM' will be similar ; and since MR is equal to
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M'R, NT will be equal to NT' ; that is, the portion of a tan-

gent included between the asymptotes is bisected at the point

of contact.

221. If a straight line be drawn through any point on an

hyperbola, the rectangle of the parts intercepted between that

point and the asymptotes, will be equal to the square of the

parallel semidiameter.

Let a straight line drawn through the point P on the hyper-

bola meet the asymptotes in M and M'; then we have

PM . PM /=(MR~PE)(MR+f>K)

=MR2-PR2
.

But

and

hence

MK'=—]a? (Art. 219),

YR% ~(a?-a'*) (Art. 204)

;

MR*- PR':
a

that is, PM.PM,= 5
/
",

or, the rectangle of the parts PM and PM' is equal to the

square of the parallel semidiameter.

222. To find the equation to the hyperbola referred to the

asymptotes as axes.

Let CX, CY be the original axes coinciding with the axes of

the hyperbola, and let CD, CE be the

new axes, inclined to CX on opposite

sides of it at an angle ]3, such that

tang. ]3= - (Art. 213). Let x, y be the
a

co-ordinates of a point P referred to the

old axes, and x'', y
r
the co-ordinates of

the same point referred to the new axes.

The formulas for passing from rectangular to oblique co-or-

dinates, the origin remaining the same (Art. 56), are

x—x' cos. a+yf

cos. /3,

y—x' sin. a+ y' sin. /3.
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But, since a= — /3, these equations become
x=(x'+y') cos./3,

2/=(^
/— 2/0 sin. j3.

Now sin. /3

=

-7tf> and cos. p

=

j^r ;

also, CLa=CAa+ALa=a9+ b\

Represent CLhjc; then

sin. /3= -, and cos. 8= -.

_ . | a(x'+y') b(x'-y')
Therefore x=~ —. and y= —

.

Substitute these values in the equation to the hyperbola,

ay-Vx^-aW,
and we have

dl\x>-yj- a*b\x'+yj= -aW,
or W-tff-W+ifT=-*i
that is, 4aj'y'=c";

or, suppressing the accents,

c
a aa+ &

a

which is the equation of the hyperbola referred to the asymp-

totes as axes.

223. Equation to the conjugate hyperbola. The equation

to the conjugate hyperbola referred to the same axes may be

found by writing — a? for &a

, and —V for b
2
(Art. 179). We

shall th§a have
a'+ b*

In the case of an equilateral hyperbola, the angle DCE= 90°

;

that is, the asymptotes are perpendicular to each other. For

all other hyperbolas the asymptotes make oblique angles with

each other.

Ex.1. Trace the curve whose equation referred to rectangu-

lar axes is xy=10.
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We may assume any value for x, and the corresponding value

of y may be found from the equation. Thus, if

<y--x--

x=2,y=
es=S,y=
x=4,y=
x=5,y=
x=6,y=

:10.

5.

3.33.

2.5.

i.

1.66.

x= 7,y=lA3.
x= 8,y=1.25.

x- 9,y=l.ll.

aj=10,y=1.00.

SB=ll,y=0.91.

aj=12,y=0.83.

\

Tfrrrr .

These values determine the points of the curves a, b, c, d, etc.

If x is negative, y is also negative,

and the points a'', b\ </, etc., will be

determined in the third quadrant.

As x increases indefinitely, y de-

creases, and the curve is unlimited m I Jl '

I
r m

in the direction of x positive, but *dH
continually approaches the axis of

x without actually reaching it. The
same is true for the direction of x

negative, and for each direction of the axis of y.

Ex. 2. Trace the curve whose equation referred to oblique

axes is xy= — 10.

224. Parallelogram on any abscissa and ordinate.

be any point on the hyperbola, from which draw
PM, PjS" parallel to the asymptotes, and repre-

sent these co-ordinates by a?, y ; then, by Art.

LetP

K
If we multiply each member of this equation by sin. 2/3, we
shall have

xy sin. 2/3

=

°—^- sin. 2/3, (1)

where 2/3 is the angle included by the asymptotes. The first

member of this equation represents

CMxCNx^n.MCK (2)

But CX x sin. MCN is the perpendicular from N upon the line
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CM ; hence expression (2) represents the area of the parallelo-

gram CNPM.

Since sin. 2/3=2 sin. ]3 cos. /3=^y2 (Art. 222),

the second member of eq.l reduces to -^.

Hence the parallelogram CNPM described on the abscissa

and ordinate of any point on the curve, is equal to half the

rectangle under the semiaxes, or one eighth the rectangle under

the axes.

225. Tofind the equation to the tangent at anypoint ofan
hyperbola when the curve is referred to its asymptotes as axes.

Let x\ y
r

be the co-ordinates of the point of contact, x", y"

the co-ordinates of an adjacent point on the curve.

The equation to the secant line passing through these points is

y-y'=wEi^- x ')- CO

Since the two given points are on the hyperbola, we have

(Art. 222)
(?

xy "4

x u
Hence x'y''—x ffy''', or y"

frn ,tt

X

x'lf
Therefore y"—y'=-77—yx

whence
y -y y_

x"-x'~~x"
By substitution, eq. (1) becomes

y-y'^-^rix-x'). (2)

If we suppose #'=#", smd-y'—y", the secant will become a

tangent, and equation (2) will become
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y-y :,(x-x%

which is the equation to the tangent line.

If we clear this equation of fractions, we shall have

yx'-x'y'=-xy' + x'y';

ff
1 I 7 2

therefore yx'+ xy'— 2x'y'=—-— ,*

which is the simplest form of the equation to the tangent line.

226. Points of intersection with the axes. To find where

the tangent at x\ y
f meets the axis of ab-

scissas, put y— in the equation to the tan-

gent line, and we have

or x=2x/

;

that is, the abscissa CT' of the point where

the tangent meets the asymptote CE is

double the abscissa CR of the point of tangency.

To find where the tangent cuts the axis of Y, put x=0 in the

equation to the tangent line, and we have

ijx'= 2xy\
or y= 2?j;

that is, CT is double of PR.
Also, because PR is parallel to CT, TT' is double of PT, or

the tangent TT' is bisected in P; that is, if a tangent line he

drawn at any point of an hyperbola, the part intercepted be-

tween the asymptotes is bisected at the point of contact.

II

eTt7"
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SECTION VIII.

GENERAL EQUATION OF THE SECOND DEGREE.

227. We have seen that the equations of the circle, the par-

abola, ellipse, and hyperbola are all of the second degree ; we
will now inquire whether any other curve is included in the

general equation of the second degree.

The general equation of the second degree between two va-

riables may be written

ax* + bxy+ cif+ dx+ ey -\-f= 0, (1)

which contains the first and second powers of each variable,

their product, and an absolute term.

We shall suppose the axes to be rectangular ; for if they were

oblique we might transform the equation to one referred to

rectangular axes, and we should obtain an equation of the same

degree as the above, and which could not, therefore, be more

general than the one we have assumed.

228. To remove certain terms from the general equation.

We wish, if possible, to cause certain terms of this equation to

disappear. For this purpose we may change both the origin

and direction of the co-ordinate axes, without assigning any

particular values to the quantities which determine the position

of the new axes. By this means, indeterminate quantities are

introduced into the transformed equation, to which such values

can afterwards be assigned as will cause certain of its terms to

vanish. Instead of chan^inc; both the origin and direction of

the co-ordinate axes at once, it is more convenient to effect

these changes successively.

229. The terms containing the first powers ofx and y in

the equation of the second degree, may in general he made to

disappear by changing the origin of the co-ordinates.
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In order to effect this transformation, substitute for x and y
in equation (1) the values

x=zx'+h,

by which we pass from one system of axes to another system

parallel to the first (Art. 54).

The result of tliis substitution is

ax'
2+ bx'y'+ erf

1+ (2ah+ bk+ d)x'+ (2ck+ bh+ e)y'

+ at?+ bhk+ d?+ dh+ ek+f= 0.

Now, in order that the terms involving the first powers of x'

and y' may disappear, we must have

2ah+ bk±d=0, \

and 2c&+bh+e = Q.

From these equations we obtain

2cd—be 2ae—bd*=?=& and ^="^=i^-
These are the values of h and k which render the proposed

transformation possible ; hence, denoting the constant quantity

ah*+ bhk+ck2+ dh+ ek+f
byf, the transformed equation becomes

ax"+ bx'y'+ cy" +/'= 0. (2)

When b
2—4:ac—0

y
the above values of h and k become infi-

nitely great, and the proposed transformation is impossible.

If equation (2) is satisfied by any values xv yl
of the varia-

bles, it is also satisfied by the values —&v —yv Hence the new
origin of co-ordinates is the centre of the curve represented by

equation (1).

Thus, if U— kac be not =0, the curve represented by (1) has

a centre^ and its co-ordinates are h and k, the values of which

are given above.

We may suppress the accents on the variables in equation

(2), and write it ax2 + bxy+ cif +/'= 0. (3)

230. The term containing xy in the general equation of the

second degree may be taken away by changing the directions

of the axes.
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For this purpose put

x—x f

cos. 0—y' sin. 0,

y—x f

sin. 9+y f

cos. 6.

Substituting these values of x and y in equation (3), and ar-

ranging the result, we have

x f\a cos.
2 + c sin.

2 + £ sin. 6 cos. 0)

+yf\a sin.
2 + <? cos.

20— b sin. cds. 0)

-f#y{2(<?—a) sin.0 cos. + %os. 2

0-sin. 2

0)}+/
/= O. (4)

Now, in order that the term involving x'y
f may become zero,

we must have

2(c— a) sin. cos. + 5(cos.
2
0-sin. 2

0)= O.

But by Trig., Art. 73,

2 sin. cos. = sin. 20; also cos.
20— sin.

2 = cos. 20;

hence (c— a) sin. 20+ 5 cos. 20= 0,

or tang. 20=^. (5)

Since the tangent of an angle may have any magnitude from

zero to infinity, this value of tang. 20 is always possible, what-

ever be the values of a, £, and c ; hence such a value of may
always be found as shall remove the term involving x'y' from

equation (4), and the general equation is reduced to the form

AiB'
a+By/a+/'==0,

or, suppressing the accents on the variables, we have

A09+B^+/'=O. (G)

By solving this equation we have

.

V-f'-W

from which we see that if A, B, and/*7 have the same sign, the

quantity under the radical is negative, and equation (G) repre-

sents an imaginary curve.

If A and B have the same sign, andf have the contrary

sign, the equation represents an ellipse (Art. 121).

If A and B have different signs, the equation represents an

hyperbola (Art. 170).

IfA=B, the equation represents a circle (Art. GO).

Ify= 0, and A and B have the same sign, the equation can
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only be satisfied by the values #= and y= 0; that is, the

equation represents a point, viz., the origin.

Iff= 0, and A and B have different signs, equation (6) re-

duces to y=i±.x\J — p,

which represents two intersecting straight lines.

231. To find the values of the coefficients A and B in equa-

tion (6) in terms of'a, b, and c.

Since A= a cos.
2 + c sin.

2 + i sin. cos. 0,

and B=a sin.
2 + <? cos.

20— £ sin. cos. 0,

we have, by addition, observing that sin.
2 + cos.

2 = 1,

A+B= a+ <?, (m)

and by subtraction, observing that cos.
20— sin.

2 = cos. 20,

A-B=(a—c) cos. 20+ J sin. 20.

JSTow, since sec. = Vl + tang.
2

,

byeq.(5), sec. 20=^4 *'
V^~ C)

'+b

hence cos. 20:

{a—cf a—c
cc—c

and sin. 20— , =.
Vu+(CL-Cf

Hence we have
(a-cyA-B=

V+(a-cy
/=Vy+(«- cy

==±^,+(«- c)'- <*>

Adding and subtracting successively (m) and (»), we have

B=l{a-c+W+ (a-cy}.

Multiplying together these values of A and B, we have

. _, (a+ cy-U-ia-cy Aac-VA . B= ;
—

-. .

4 4

Hence A and B have the same sign or different signs accord-

ing as ^ac—V is positive or negative.
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232. Particular case considered. We will now consider

the case in which b2— kac is zero. We can not in this case

destroy the terms involving x and y by transferring the origin

to the centre of the curve, as was done with the ellipse and

hyperbola, but we may remove the term involving xy by chang-

ing the direction of the axes.

Let the equation be

ax*+ bxy+ cy* +dx+ ey+f— 0. (1)

Put x— x f

cos. 9— y' sin. 0,

y=x ;

sin. 9-\-y
f

cos. 0.

Substituting these values in equation (1), we have

x'\a cos.
2 + c sin.

2 + £ sin. cos. 0)

+y
r\a sin.

2 + <? cos.
2 — b sin. cos. 9)

+xy{2(c-a) sin. 9 cos. 0+5(eos.
20-sin. 2

0)}

+x'(d cos. 9+e sin. 9)+y\e cos. 9—d sin. 0)+/=O. (2)

In order that the term involving x
f

y' may become zero, we
must have 2(c— a) sin. 9 cos. + £(cos.

20— sin.
2

0)= O;

whence, as in Art. 230, tans;. 29— ,
7 & a— <y

and the co-efficients of xn and y'% as in Art. 231, are

±{a+ c+Vb* + (a-cy}.

One of these coefficients must therefore vanish, since their prod-

4:dC b*
net (Art. 231) is —j— , which, by hypothesis, =0. Suppose

the coefficient of x ;2— ; if we suppress the accents on the va-

riables, equation (2) will assume the form

(Y+ Da?+Ey+/=0. (3)

Transposing and dividing by C, we have

f
E?/ T>x f

E,
y + c - c a

Adding -r^ tb each member, we have

/ EV D/ E2

f\

t^ . 7 E ^ r
D

a
E 2 / . . /(Tut £= — —-„ M=—p, and w= jfttt—^k, and equation (4)

may be written (y— Z)
2— M(#— n).
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If now the origin be transferred to a point whose co-ordi-

nates are x~n, y—l,

we shall have, by writing x+ ?i for x, and y+ l for y,

3f=M«, (5)

which is the equation to a parabola.

If in equation (3) D= 0,we have.

Cy+Ey+/=0,
"F 1

which gives y= ""20^2(3^-lOf,
which represents two parallel straight lines, or one straight line,

or an imaginary curve, according as E2
is greater, equal to, or

less than 4tCf.

233. Conclusions. Hence we arrive at the following results

:

The equation ax?+ bxy+ cy
x+ dx+ ey+f=-

represents an ellipse, if 6
2— 4ac be negative, subject to three ex-

ceptions, in which it represents respectively a circle, a point,

and an imaginary curve (Art. 230).

If V—kac be positive, the equation represents an hyperbola,

subject to one exception when it represents two intersecting

straight lines (Art. 230).

If V—4:ac=0, the equation represents a parabola, subject to

three exceptions, in which it represents respectively two paral-

lel straight lines, one straight line, and an imaginary curve

(Art. 232).

Ex. 1. Determine the form and situation of the curve repre-

sented by the equation

x2—xy+y*—2x—2y+2— 0.

Here If—\ac—— 3; hence the equation represents an el-

lipse (Art. 233).

In order to transfer the origin to the centre of the curve, we
substitute h+x' for x, and k+ y' for y. The values of h and k

are given by the formulas of Art. 229,

7
-4-2

rt
1 -4-2

also, /'=4-4+4-4-4+ 2=-2.



17G ANALYTICAL GEOMETRY.

Hence the transformed equation is

Next, retaining the centre of the ellipse as the origin, we
must find through what angle the axes must be turned in order

that the term containing xy may vanish.

By Art. 230, tang. 20=—— = =
jj~= infinity; hence 20= 90°,

and 0=45°.

Also, by Art, 231, A=4(2+ VT)=f,
and B=-i(2-Vl)=4.
Therefore the equation to the ellipse referred to the new axes is

x 4. %2

2-+-f--2=0,
or ^2+ 3t/

2= 4.

2 4
The semiaxes are —n\ and 2, and the axes are —^ and 4.

The annexed figure represents the form of the curve, and

its position with respect to the different

/X systems of axes, the co-ordinates of A'
being (2, 2), and the angle X'A'X" be-

ing 45°.

x1—xy+?/-2x-2y+2 =
is the equation of the ellipse referred

to the axes AX, AY.
x

12 —xy+if— 2=
is the equation of the same ellipse referred to the axes A'X',

AT.
#2+ 3//

2= 4

is the equation of the same ellipse referred to the axes A'X",

A'Y".
Ex. 2. Determine the form and situation of the curve repre-

sented by the equation

x2— Gxy+ y'-Gx+ 2y+ 5 = 0.

Here V— 4a<?= 3G—4^32 ; hence the equation represents

an hyperbola.

By the formulas of Art. 229 we find

.
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/;=l-2+5=4.
Hence, when the origin is transferred to the point (0, —1), the

equation becomes x*— 6xy+y*+ 4z= 0.

In order that the term containing xy may vanish, we must

have tang. 20=—
{
y= infinity. Hence 0=45°.

Also, A=^(2+ V36)=+4,
and B=|(2-.V36)=-2.
Hence the transformed equation is

4?/
2-2^+ 4= 0.

The student should construct a figure showing the form and

position of the curve with respect to the different axes of ref-

erence.

Ex. 3. Determine the form and situation of the curve repre-

sented by the equation

x*-2xy+ y
2-8x+lQ = 0. (1)

Here i
2—Aac=0 ; hence the equation represents a parabola.

Substituting for x in eq. (1),

x' cos. 9—y f

sin. 0,

and for y, x' sin. 9-\-y
r

cos. 0,

we obtain an equation of the form

Ax'+Bxy+Ctf+Dx+Ey+F^O, (2)

where A= 1— sin. 20, D= — 8 cos. 9,

B= -2(cos.
20-sin. 2

0), E= 8 sin. ft

C= 1 + sin. 20, F=16-
Kow, in order that B may vanish, we must have

cos. = sin. ; that is, = 45°.

Making = 45°, equation (2) becomes

or ^*+y.2V2—af.2V2+8=0,
which may be written

or (7/+V2y=2V2(x-^j.

112
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If now we transfer the origin to a point whose co-ordinates

are x— —r-^ and y~ — -y/2,

the equation to the curve will become

if=x.2^/±
The student should construct a figure showing the form and

position of the curve with respect to the different axes of ref-

erence.

234. Equation to the conic sections referred to the same

axes and origin. When the origin of co-ordinates is placed at

the vertex of the major axis, the equation of the ellipse (Art.

129) is ^=jIfl«-«OS

the equation to the hyperbola for a similar position of the or-

igin (Art. ISO) is f= -£2ax+ x*)
;a

the equation to the circle (Art. 63) is

if— 2rx—xl

\

and the equation to the parabola (Art. S5) is

if — iax.

These equations may all be reduced to the form

tf=zmx+nx\
2/>

a -b*
In the ellipse, m——, and n——5-

J

2b* Z>
a

in the hyperbola, in—— , and n——^\

in the parabola, m — ia, and n= Q.

In each case m represents the latus rectum of the curve, and

n the square of the ratio of the semiaxes. In the ellipse n is

negative, in the hyperbola it is positive, and in the parabola it

is zero.

The equation if^mx+ nx 1

is the simplest form of the equa-

tion to the conic sections taken collectively, and referred to the

same axes and origin.
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235. Miscellaneous Examples.

Draw the curves of which the following are the equations

:

Ex.1, a:
5+ 2/= 10.

Ex.2. a5
,-V=10-

Ex.3. x,+ Sx=10i/.

Ex.4. xi/+10y=4O.

Ex.5, 3.e'+2^= lS.

Ex.6. 3.*;
3+ 2/=:-lS.

Ex.7. 3*3+2^= 0.

Ex. 8. y»=4(«-3).
Ex. 9. 3ajy=5.

Ex.10. Sxy-x+2=0.
Ex.11. 5^+7^=11.
Ex.12. 3/-2y+4a:=0.
Ex.13. y»+5y-9aj+10=0.
Ex.14. 7x'-lh/=-50.
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SECTION IX.

TAKES OF TIIE THIRD AND HIGHER ORDERS.

236. Lines of the third order have their equations of the form

ay3+ by
2x+ cyx

2+ dx3+ ey
2

+fyx+ gx2+ liy+ Jcx+ 1= 0.

Newton has shown that all lines of the third order are com-

prehended under some one of these four equations

:

(1) xy2+ey=ax3+ bx
2+ cx+ d;

(2) xy=ax3+ bx2+ cx+ d;
(3) y

2= ax3+ bx
2+ cx+ d;

(4) y~ax3+ bx
2+ cx+d;

in which a, b, c, d, e may be positive, negative, or evanescent,

excepting those cases in which the equation would thus become

one of an inferior order of curves.

The first equation comprehends seventy-three different spe-

cies of curves, the second only one, the third five, and the fourth

only one, making eighty different species of lines of the third

order.

237. It is not proposed to attempt any general investigation

of the equation of the third degree, but merely to select a few

instances calculated to exhibit the properties of some of the

more remarkable curves.

Ex.1. Trace the curve whose equation is (jy— x3
.

Suppose x— 0, then y— 0.

a=±l, " y==fc0.167.

a?==k2, " y=±1.333.
a==fc3, " y=±4.500.
x=±±, " y= ±10.667, etc.

Constructing these values, we obtain the

figure annexed. This equation may be

written mure generally ay=x3
, and the curve is called the cu-

bical parabola. It belongs to eq. (4), Art. 230.
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Ex. 2. Trace the curve whose equation is -ii/'— x3
.

Suppose a=0, then y--

a?=+2,

a=+3,

:0.

y=±0.500.
y=±1.414.

y= ±2.598.

y= ±4.000.

a?=+5, " y= ±5.590.

If x is negative, ?/ becomes imaginary. The

curve is represented by the annexed figure, and is called tire

scmieiibieal parabola. The equation in a more general form

is ay2= x3
, and belongs to eq. (3) of Art. 236.

Ex. 3. Trace the curve whose equation is

t<r?/
2= 10.

Suppose y= 0, then x— infinite.

" x is negative, " y is impossible.

" y=±l, " #=+10, etc.

The curve is of the form represented in the

annexed figure, and belongs to equation (1),

Art-. 236.

Ex.4. Trace the curve y—x3 —x.

Suppose x=0, then y—0.
£=±0.5, " y= =+=0.375.

#=±1, " y= 0.

x=±x. y= ±6.

The curve is shown in the annexed "figure, and

belongs to eq. (4), Art. 236.

Ex. 5. Trace the curve y
1— x3 —x.

Suppose x= 0, then y—0.
x=±l, " y—0.
^—+0.5 " y— impossible.

^=-0.5, " y= ±0.612.

£=+2, u y= ±2.449.

x=+3, " y- ±4.899.

The curve is shown in the annexed figure.

-e
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/ Ex. G. Trace the curve whose equa-
^- tlOTl is

10y=^3— 9a?" + 23aj— 15.

Ex. 7. Trace the curve whose equa-

tion is

l(y=£3_ll^+ 34#-24.

Ex. 8. Trace the curve whose equa-

tion is

10y
2=£3-9#5+ 24z-10.

Ex. 9. Trace the curve whose equation is

lCy=£3
-12a!

2+ 48£-04.

Ex. 10. Trace the curve whose equation is

10?/
2=^+ 3^-22^-24.

Ex. 11. Trace the curve •whose equation is

y=x*— 3x.

Ex. 12. Trace the curve whose equation is

y*= x2 -dx.

Ex. 13. Trace the curve whose equation is

^=a?—of.

238. Equations of thefourth degree. The general equation

of the fourth degree represents an immense variety of curve

lines, the number of different species being estimated at more

than 5000. The number of species of lines of the fifth and
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higher orders is so great as to preclude any attempt to enumer-

ate them completely.

Ex. 1. Trace the curve whose equation is

7/£
3= 81.

Ex, 2. Trace the curve whose equa-

tion is

Ex. 3. Trace the curve whose equation is

xy+x*+ 6x*-lGx*-150x=225.

Ex. 4. Trace the curve whose equation is

x*+ 2xy+y*= (x*+yy=16(x>-7/).
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SECTION X.

TRANSCENDENTAL CURVES.

239. Equations classified. Equations may be divided into

two classes, algebraic and transcendental. An algebraic equa-

tion between two variables, x and y, is one which can be reduced

to a finite number of terms involving only integral powers of

x and y, and constant quantities. Equations which can not be

thus reduced are called transcendental ; for they can only be

expanded into an infinite series of terms, in which the power

of the variable increases without limit, and the equation tran-

scends all finite orders.

240. Curves classified. Curves whose equations are tran-

scendental are called transcendental curves. Among tran-

scendental curves, the cycloid and the logarithmic curves are

the most important. The logarithmic curve is useful in exhib-

iting the law of the diminution of the density of the atmos-

phere, and the cycloid in investigating the laws of the pendu-

lum and the descent of heavy bodies toward the centre of the

earth.

CYCLOID.

241. A cycloid is the curve described by a point in the cir-

cumference of a circle rolling in a straight line on a plane.

n
Thus, if the circle EPN be made to roll in a given plane

upon a straight line AC, the point P of the chmimference,
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which was in contact with A at the commencement of the mo-

tion, will in a revolution of the circle describe a curve ABC,
which is called the cycloid. The circle EPX is called the gen-

erating circle , and P the generating point.

When the point P has arrived at C, having described the arc

ABC, if it continue to move on, it will describe a second arc

similar to the first, and so on indefinitely. As, however, in each

revolution of the generating circle an equal curve is described,

it is only necessary to examine the curve ABC, described in

one revolution of the generating circle.

242. After the circle has made one revolution, every point

of the circumference will have been in contact with AC, and

the generating point will have arrived at C. The line AC is

called the base of the cycloid, and is equal to the circumfer-

ence of the generating circle. The line BD, drawn perpen-

dicular to the base at its middle point, is called the axis of the

cycloid, and is equal to the diameter of the generating circle.

243. To find the equation ofthe cycloid. Let us assume the

point A as the origin

of co-ordinates, and

let us suppose that

the generating point

has described the arc

AP. If X designates A H
the point at which the generating circle touches the base, it is

plain that the line AN will be equal to the arc PX. Through
N draw the diameter EX, which will be perpendicular to the

base of the cycloid. Through P draw PII parallel to the

base, and PR perpendicular to it. Then PR will be equal to

IIX, which is the versed sine of the arc PX.
Let hJX—x, and PR or IIX=?// and let r represent the ra-

dius of the generating circle. By Geom., Bk. IV.,Prop. 23,Cor.,

RX=PII= VXlfxTlE= Vy{2r-y)= V2ry-y* '

also, AR=AX-RX=arc PX-PII.
5
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The arc PN is the arc whose versed sine is UN" or y.

Substituting the values of AR, AN, and EN, we have

a?=(the arc whose versed sine is y)—V2ry—y\
which is the equation of the cycloid.

244. Another form of the equation. It is aometimes con-

venient, in the equation of the cycloid, to employ the angle of

rotation of the generating circle, or the angle subtended by the

arc PN at the centre of the circle EPN. Let this angle be

denoted by 0, and the radius of the circle by r; then

the arc PN=^0,
and AH or x=zrQ— r sin. 0,

and IXN or y=r—r cos. 0.

If we eliminate 6 from these two equations, we shall obtain

the same value of x as given in Art. 243.

LOGARITHMIC CURVE.

245. The logarithmic curve takes its name from the prop-

erty that, when referred to rectangular axes, any abscissa is

equal to the logarithm of the corresponding ordinate. The
equation of the curve is therefore

x—log. y.

If a represent the base of a system of logarithms, we shall

have (Alg., Art. 394) y=ax
.

To examine the course of the curve, we find, when x=0,

y= a°= l; as x increases from to <x>, y increases from 1 to <x>

;

as — x increases to oo, y decreases from 1 to 0. Draw AB per-

pendicular to DC, and make it equal to the linear unit ; then

the curve proceeding from B to the right of AB recedes from

the axis of x, and on the left continually approaches that axis,

which is therefore an asymptote.

Any number of points of the curve may be determined from

the equation y~ax
. Let AC be divided into portions each

equal to AB. Let a be taken equal to the base of the given

system of logarithms, for example 1.6, and let a2

, a
3

, etc., cor-
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respond in length with the

different powers of a. Then
the distances from A to 1, 2,

3, etc., will represent the loga-

rithms of a, a?, a% etc.

The logarithms of numbers

less than a unit are negative,

and these are represented by

portions of the line AD to the

left of the origin.

246. In a similar manner we may construct the curve for

any system of logarithms. Thus, for the Naperian system,

a= 2.718.

cf= 7.389.

a3 =20.085.

a- 1^ 0.368.

a-2= 0.135, etc.

If at the point A we erect an

ordinate equal to unity, at the

point 1 an ordinate equal to

2.718, at the point 2 an ordinate

equal to 7.389, etc., at the point —1 an ordinate equal to 0.368,

etc., the curve passing through the extremities of these ordi-

nates will be the logarithmic curve for the Naperian base.

Ex. 1. Construct by points the logarithmic curve, the base

being 10.

Ex. 2. Construct by points the logarithmic curve, the base

being ^.

CUKVE OF SINES, TANGENTS, ETC.

247. If we conceive the circumference of a circle to be ex-

tended out in a right line, and at each point of this line a per-

pendicular ordinate to be erected equal to the sine of the cor-

responding arc, the curve line drawn through the extremity of

each of these ordinates is called the curve of sines.
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Draw a straight line ABC equal to the circumference of a

given circle, and

s upon it lay off the

a m f iKr~ SG x lengths of several

arcs, at every 10° for

example, from 0° at

A to 360° at C ; from these points draw perpendicular ordi-

nates equal to the sines of the corresponding arcs, upward or

downward, according as the sine is positive or negative in that

part of the circle ; then draw a curve line ADBEC through the

extremities of all these ordinates ; it will be the curve of sines.

248. Tofind the equation of the curve of sines. Draw any

ordinate PM. Let AM=^, and PM=y/ then the equation is

If r represent the radius of the given circle, then

y—r sin. -.

Since the sine is when the arc is 0, the curve cuts the axis

at A. Since the sine of 90° is a maximum, the highest point

of the curve will be at D, where y—r. The curve cuts the

axis again in B ; from B, y increases negatively until it equals

— r, and then decreases to 0, so that we have a second branch

equal and similar to the first. Beyond C the values of y recur,

and the curve continues the same course ad infinitum. Also,

since sin. (—x)~— sin. %, there is a similar branch to the left

of A.

In a similar manner may be drawn the curve of tangents,

the curve of secants, etc.

SPIRALS.

249. Definition. If a right line be revolved uniformly in

the same plane about one of its points as a centre, and if at the

same time a second point travel along the line in accordance

with some prescribed law, the latter point will generate a curve

called a spiral.
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Thus, let PD be a straight line which revolves uniformly

round the point P, starting from

the position PC, and at the same

time let a point move from P
along the line PD according to

some prescribed law ; the point

will trace out a curve line which

commences at P, and after one

revolution will arrive at a point

A ; after two revolutions it will

arrive at a point B, and so on.

The curve thus traced is called a sjpifal.

250. The fixed point P, about which the right line revolves,

is called the pole of the spiral. The portion of the spiral gen-

erated while the straight line makes one revolution is called a

spire. If the revolutions of the radius vector are continued

indefinitely, the generating point will describe an unlimited

spiral. It is assumed that the point does not, after a limited

number of revolutions, describe again the previous curve, but

that any straight line drawn through the pole of the spiral will

cut the curve in an infinite number of points.

Instead of starting from the pole, the generating point may
commence its motion at any distance from the pole; and in-

stead of receding, it may move toward the pole.

With P as a centre, and any convenient radius as PA, de-

scribe the circumference ADE;
the angular motion of the radius

vector about the pole may be

measured by the arcs of this cir-

cle, estimated from A. It is gen- eI

erally convenient to make the ra- \

dius of the measuring circle equal

to the length of the radius vector

at the end of one revolution of
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the generating point, starting from the pole, but the measuring

circle may have any magnitude.

251. Spiral of Archimedes. While the line PD revolves

uniformly round the point P, let the generating point also

move uniformly along the line PD ; it will describe the spiral

of Archimedes.

252. To construct the spiral ofArchimedes. Let P be the

pole, and PX the first position of the

radius vector. "With P as a centre,

and any convenient radius, describe

the measuring circle ACEGr, and di-

vide its circumference into any con-

venient number of equal parts, as, for

example, eight. On PB set off PI any convenient distance

;

on PC set off PK=2PI; on PD set off PL=3PI, etc. The
curve passing through the points I, K, L, M, etc., thus deter-

mined, will be the spiral of Archimedes, for the radii vectores

are proportional to the arcs AB, AC, etc, of the measuring

circle.

253. Tofind the equation to the spiral ofArchimedes.- From
the definition of the curve, the radii vectores and the measur-

ing arcs increase uniformly ; that is, in the same ratio. Hence
we have

PL : PR : : angle APD : four right angles.

Designate the radius vector PL by r, PR by &, and the variable

angle by ; then we shall have

r:$::0:2ir;

bO . h
whence P=q~ ; or, putting 0=5-, we have the equation

r=a0.
When the radius vector has made two revolutions, or — ^tt^

we have r—2b; that is, the curve cuts the axis PX at a dis-

tance equal to 2PR; after three revolutions it cuts the axis
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PX at a distance equal to 3PR, etc. Hence the distance be-

tween any two consecutive spires, measured on a radius vector,

is always the same.

254. Hyperbolic spiral. While the line PN revolves uni-

formly about P, let the generating point move along the line

PjST in such a manner that the radius vector shall be inversely

proportional to the corresponding angle ; it will describe the

hyperbolic spiral.

255. To find the equation to the hyperbolic spiral. From
the definition of the curve, the

radius vector is inversely propor-

tional to the measuring angle;

hence we have

PG : PN : : angle APN : four

right angles.

Designate the radius vector PN
by r, PG by 5, and the variable

angle measured from the line

PX by 0, and we shall have

b:r::0:

Whence r0= 2b7r;

or, putting 2bir= a, we have

rQ— a.

When 0=0, r=oo; as 6 increases, r decreases, at first very

rapidly, but afterwards more uniformly. As may increase

without limit, r may decrease indefinitely without actually be-

coming zero ; hence, as the radius vector revolves, the curve

continues to approach the pole, but reaches it only after an in-

finite number of revolutions. This curve is called the hyper-

bolic spiral from the similarity of its equation to that of the

hyperbola referred to its asymptotes (xy—c'2

), the product of

the variables r and being equal to a constant quantity.

2tt.
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256. To construct the hyperbolic spiral. Let P be tlie pole,

and PX the first position of the radius vector. With any con-

venient radius draw the measuring circle ABDE, and divide

its circumference into any convenient number of equal parts

AB, BO, CD, etc. On PB, produced if necessary, take any con-

venient distance, as P1ST ; take PM equal to one half of PN,
PL equal to one third of PN", PK equal to one fourth of PjST,

etc. ; the curve passing through the points N", M, L, K, etc., will

be an hyperbolic spiral, because the radii vectores are inverse-

ly proportional to the corresponding angles measured from

PX.

257. Logarithmic spiral. While the line PA revolves uni-

formly about P, let the generating point move along PA in

such a manner that the variable angle may be proportional to

the logarithm of the radius vector; it will describe the loga-

rithmic spiral.

The equation of the logarithmic spiral is

= lO;&•
a'

or r= ab%

I) being the base of the system of logarithms (Alg., Art. 394),

and a any arbitrary constant.

258. To construct the logarithmic spiral. If we take Z>= 10,

the base of the common system of

logarithms, the changes of r are so

rapid that we can represent only a

small arc of the curve. We will

therefore assume 5=1.2. When
= 0, r= a, which determines the

point L. When = 1, that is, 57°.3

(radiwbeing unity), 7,=1.2^,which

determines the point M. When
= 2, that is, 114°.G, r= 1.2

2
a, or 1.44a, which determines the
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point N, etc. As increases, r also increases, but does not be-

come infinite until 6 becomes infinite.

If we suppose the radius vector to revolve in the negative

direction from PA, when 0=— 1,^= 0.83(2, which determines

another point of the curve. "When 0=— 2, r— 0,6da, etc.

Hence we see that, as the radius vector revolves in the nega-

tive direction, it generates a portion of the spiral which slowly

approaches the pole, but can not reach it until 0=—-oo.

Thus we see that the logarithmic spiral makes an infinite

series of convolutions around the pole P.

I
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PAET III
GEOMETRY OF THREE DIMENSIONS.

SECTION I.

OF POINTS IN SPACE.

259. Hitherto we have considered only points and lines

uated in one plane, and we have seen that the position of a

point in a plane may be denoted by its distances from two as-

sumed fixed lines or axes situated in that plane. We have now
to consider how the position of any point in space may be rep-

resented.

260. To determine the positio?i of a point in space. Let

three planes XAY, ZAX, ZAY, supposed to be of indefinite ex-

tent, be drawn perpendicular to each other, and let these planes

intersect each other in the three straight lines AX, AY, AZ.

Let P be any point in space whose position it is required to

determine.

From the point P draw the line PB perpendicular to the

plane XAY ; draw PC perpendicular to

the plane ZAX, and PD perpendicular to

the plane ZAY; then the position of the

point P is completely determined when
__x these three perpendiculars are known.

Let a, b, c represent these three perpen-

/% b diculars. On AX take AE= a, on AY
Y take AF= £, and on AZ take AG= c, and

through the points E, F, and G let planes be drawn parallel to

the three planes ZAY, ZAX, and XAY, forming the rectangu-

lar parallelopiped EFG.
Since the plane drawn through E is every where distant from

the plane ZAY by a quantity equal to a, the point P must be
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somewhere in this plane ; and since the plane drawn through

F is every wThere distant from the plane ZAX by a quantity

equal to b, the point P must be also in this plane. It must

therefore be in the line BP, which is the common section of

these two planes. Also, since the plane drawn through G is

every where distant from the plane XAY by a quantity equal

to c, the point P must be somewhere in this plane ; it must

therefore be at the intersection of this third plane with the

line BP. Thus the position of the point P is completely de-

termined.

261. Definitions. The three planes XAY, ZAX, ZAY, by

reference to which the position of the point P has been deter-

mined, are called the co-ordinate planes. The first is desig-

nated as the plane XY, the second as the plane XZ, and the

third as the plane YZ. The lines AX, AY, AZ, which are the

intersections of these three planes, are called the co-ordinate

axes. The first is called the axis of X, and distances parallel

to it are denoted by x ; the second is the axis of Y, and dis-

tances parallel to it are denoted by y ; the third is the axis of

Z, and distances parallel to it are denoted by z. The point A,

in which the three axes intersect, is called the origin of co-or-

dinates. The equations of a point in space are therefore of

the form x=a, y=b, z—c.

262. Signs of the co-ordinates. If the three co-ordinate

planes be indefinitely produced, there will

be formed about the point A eight solid an-

gles, four above the horizontal plane XAY,
and four below it. It is required to denote x

analytically in which of these angles the

proposed point is situated. For this pur-

pose, if we regard distances measured on

AX to the right of A as positive^ we must regard distances

measured to the left of A as negative. So, also, y is regarded

as positive when it is in front of the plane ZX, and negative

m
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when it is behind that plane; and z is regarded as positive

when it is above the plane XY, and negative when it is below

that plane. Hence the equations of a point in each of these

eight angles are as follows

:

If x= + a, y= +b, z= +c, the point is in the angle ZXAY.
x=-\-a, y=—b,z=+c,
x=—a, y=—b, 0= + <?,

x=—a
} y= +b

y
z=+c,

x=+a, y=+b,z=~c
y

x=+a, y=—b, z——c,
x— — #, y=—b, z= —c,

x=—a, y= +b, z= — <?,

263. Co-ordinates ofparticular points. If the point P be

situated in the plane of xy, then its distance z from this plane

is 0, and its equations will be

x=±a, y=zkb, z= 0.

If the point be situated in the plane of xz, then its distance

y from this plane is 0, and its equations will be

x==a, y= 0, z==c.
If the point be situated in the plane of yz, then its distance

x from this plane is 0, and its equations will be

x= 0, y=±b, z==c.
If the point be situated on the axis of x, that is, on the inter-

section of the planes xy and xz, then its distance from each of

these planes is 0, and its position will be expressed by the equa-

tions x=±a, y— 0, z=0.

So, also, if the point be situated on the axis of y}
we shall have

x= 0, y=±b, z= 0;

and if it be situated on the axis of z, we shall have

x= 0, y= 0, z==c.
If the point be at the origin, its position will be denoted by

the equations cc= 0, y=0, z= 0.

Ex.1. Indicate by a figure the position of the point whose

equations arc

x=+±, y=-3, s=-2.
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Ex. 2. Indicate by a figure the position of tlie point whose

equations are x—- y=+7, z=+5.
Ex. 3. Draw a triangle, the co-ordinates of whose angular

points are x— + 3, y— + 4, z— + 2
;

a>=-3, y=-4, s=-2;
#=— 1, y-0, s=+l.

264. Projections. If a perpendicular be let fall from any

point P upon a given plane, the point in which this line meets

the plane is called the projection of the point P on the plane.

The projections of the point P (Art. 260) on the three co-ordi-

nate planes are the points B, C, D.

The projection of any curve upon a given plane is the curve

formed by projecting all of its points upon that plane. When
the curve projected is a straight line, its projection on any one

of the co-ordinate planes will also be a straight line, for all the

points of the given line are comprised in the plane passing

through this line and drawn perpendicular to the co-ordinate

plane ; and since the common section of any two planes is a

straight line, the projections of the points must all lie in one

straight line. This plane, which contains all the perpendicu-

lars drawn from different points of the straight line, is called

the projecting plane.

If the positions of any two projections of the point P are

given, it will be sufficient to determine the point P ; for a line

drawn from either projection, perpendicular to the plane in

which it is, necessarily passes through the point P, so that P
will be at the intersection of two such perpendiculars. When
two projections of a point are known, we can always determine

the third.

265. To find the distance of any point

from the origin in terms of the co-ordi-

nates of that point Let AX, AY, AZ be

the rectangular axes, and P the given point.

Let the co-ordinates of P be AE=#, BE=y,
andPB=3.
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The square on AP= the sum of the squares on AB and PB.

Also, the square on AB= the sum of the squares on AE
and EB ; that is, AP2=AE2+EB2 +PB2

,

or AT2

=:x'+f+ z\

Ex. 1. Determine the distance from the origin to the point

whose co-ordinates are

x—2a, y=—3a, z— Qa.

Ex. 2. Determine the distance from the origin to the point

whose co-ordinates are

x——b, y——^b, z— Sb.

266. Tofind the distance between two given points in space.

Let M and N be the two given points, their co-

-$ ordinates being respectively x, y> z, and x\ y
f

, z'

.

n If the points M and N be projected on the
x plane of xy, the co-ordinates x, y of the projec-

tions m and n will be the same as those of the

points M and N. Hence, for the distance mn
we have (Art. 21)

mnq=(x—

x

r

y+ (y— y')
2
.

Now, if MB be drawn parallel to mn, MRN will be a right

angle, and hence MN3=MR2+NR2

=MR2+ (N^-Rn) 2

;

that is, MN= V(x-x'y+ (y-yy+ (z-zy
;

that is, the distance between any two given points is the diag-

onal of a right parallelepiped, whose three adjacent edges are

the differences of the parallel co-ordinates.

Ex.1. Determine the distance between the points

x~3, 2/=4, and z~—2,
and x=4:, ?/=— 3, and z— \. Ans. V^-

Ex. 2. Determine the distance between the points

x=2, y= 2, = 1,

and x—— 2, y=— 3, s= 4. Ans.
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X

SECTION II.

THE STRAIGHT LINE IN SPACE.

267. A straight line may be regarded as the common section

of two planes, and therefore its position will be known when
the position of these planes is known ; hence its position may
be determined by the projecting planes, and the situation of

the projecting planes is given by their intersections with the

co-ordinate planes; that is, by the projections of the given line

upon the co-ordinate planes.

268. To find the equation of a straight line in space.

Let x=mz+a
be the equation of a straight line Mj/
in the plane of xz, and through this line

let a plane be drawn perpendicular to

the plane xz. Also, let

y—nz+b
be the equation of a line mp in the

plane of yz, and through this line let a /x
plane be drawn perpendicular to the plane yz. These two

planes will intersect in a line MP, which will thus be com-

pletely determined. The two equations

x—mz+a^ (1)

y=nz + b, (2)

taken together, may therefore be regarded as the equations of

the line MP, and from these equations the line MP may be

constructed ; for, if a particular value be assigned to either va-

riable in these equations, the values of the other two variables

can be found, and these three quantities taken together will be

the co-ordinates of a point of the required line.

Thus, suppose n'r to be a value of z ; this, with the corre-

sponding value of x deduced from equation (1), will determine

z
sM

?i'

71
1/

1

/A r /P/

/ 3R\
V
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a point ?i\ through which a line must be drawn perpendicular

to the plane xz. The same value of £, with the corresponding

value of y deduced from equation (2), will determine a point

n, through which if Nn be drawn perpendicular to the plane

yz, it will intersect the line ISm', since both lines are situated in

the same plane, viz., a plane parallel to xy, and at a distance

from it equal to z. The point N of the line MP is therefore

determined, and in the same manner we may determine any

number of points of this line. Hence the equations to the

straight line MP are x=mz+ a
9 (1)

yz=znz+b. (2)

289. Interpretation ofthe constants in these equations. In

equation (1) m represents the tangent of the angle which the

projection of the given line on the plane xz makes with the

axis of z, and a represents the distance cut from the axis of X
by the same projection (Art. 29).

In equation (2) n represents the tangent of the angle which

the projection on the plane yz makes with the axis of £, and b

is the distance cut from the axis of Y.

If we combine these two equations, and eliminate the varia-

ble £, we shall have n
y—b= —(x—a),

which expresses the relation between the co-ordinates of the

point R, which is the projection of the point N" on the plane

xy, and therefore this last equation is the equation of the line

MP projected on the plane xy.

Ex. The equations of the projections of a straight line on the

co-ordinate planes zx
}
zy are

#=23 + 3, y=3s—5;

required its equation on the plane xy. Ans. 2?/= 3 t£— 19.

270. To determine the points where the co-ordinate planes

are pierced by a given straight line. At the point where a

line pierces the plane xy the value of z must be 0. If we sub-
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stitute this value of z in equations (1) and (2) of Art. 268, we
shall find x= a, y= b

;

hence a and b taken together are the co-ordinates of the point

in which the given line pierces the plane xy.

In like manner, the co-ordinates of the point in which the

line pierces the plane xz may be determined by putting y—0
in equation (2), and substituting the resulting expression for z

in equation (1). In the same manner, the point where the line

pierces the plane yz may be determined.

Ex.1. Determine the points where the co-ordinate planes are

pierced by the line whose equations are

#= 2,2+ 3,

y=3z-7.
Ex. 2. Determine the points where the co-ordinate planes are

pierced by the line whose equations are

x—— 2z—5
y

y=-z+2.

271. Tofind the equations ofa straight linepassing through

a given point. Let the co-ordinates of the given point be x',

y', z\ and let the equations to the straight line be

x=m2+ a, y=nz+b.
Kow, since this line passes through the given point, we must

have x'= ?nz'+ a>

y'—nz'+b;
hence we obtain

x—x'=m(z—z f

),

and y—y'=n(s— a*),

which are the equations sought, and characterize every straight

line which can be drawn through the point x\ ?/', z\ If the

given point be the origin, then #'= 0, y
f— 0, and s'=0

3
and the

equations of a line passing through the origin are

x—7nz
y

y—nz.

272. Equations ofa straight line passing through two given

points. Let the co-ordinates of the given points be x\ y\ z\

12
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and x\ y'\ z"; then the equations of the line passing through

the first of these points are

x-x f=m{z-z%\
y-y'=n{z-z f

).\
W

Since the line passes through the point xh
', y", z

f

\ we must also

have x"—x f— m(zf/— z'),

and y"-y'=n(z"-z%
from which we obtain the values of m and n, viz.

x'
f—xr y"—y'

Z"— Z'? z"—z'

These values of m and n, being substituted in equation (1

will famish the equations of the line passing through both the

given points. We have, therefore,

/
& 3?

fX—X —
z
ff_

z
\2— 2),

If one of the points a?", y"> z" be the origin, these equations

become x—— . s,
z

y'

Ex. 1. Find the equations to the straight line passing through

the following points

:

a?'=3, y'=-4j s'=2,

x"=-$, y"=6, s"=3.

Ans. x= —83+ 19, y=10z-2±.
Ex. 2. Find the equations to the straight line passing through

the following points

:

aj'=4, ;?/
= -2, 3'=-3,

x"= 0, y"=l, z"=—%
Aiis. x=—4:Z—8, y=3z+7.

273. To determine the conditions requisitefor the intersec-

tion of two straight lines. Two straight lines which are not

parallel must meet if they are situated in the same plane, but
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tliis is not necessarily true for lines situated any where in space.

In order that two lines may meet, there must be a particular

relation among the constant quantities in their equations. In

order to discover this relation, let the equations to the lines be

x=?nz+ a,
\

x— ori
r

z-\-a'',
)

y=nz+ b, J

and y=n'a+V. )

If these lines intersect, that is, have one point in common, the

co-ordinates of this point must satisfy both sets of equations,

or for this point the values of x, y, and z must be the same in

all the equations. Since x of the one line equals x of the oth-

er, we have (m— m')z+a—a/= 0,

a'—

a

or z— ,;m—m'
and since y of one line equals y of the other, we have

(n-n')z+b-U= 0,

V-b
or z— -,.n—n
But z of the one line is equal to z of the other ; hence

a'-a V-b
in—m'~~n—nf '

Hence, when the lines intersect, the relation between the con-

stants is given by the equation

(a
f-a)(n-n')= {U-b)(m-m f

). (1)

Conversely, when this equation exists the two lines intersect.

The co-ordinates of the point of intersection may be deter-

mined by substituting in the expressions for x and y the value

of z just found. They are

ma!—m!a nb'—n'b
x= r~i V— j-*m—m ' * n—n 7

_ a'-g V-b
~
'm—m'~ n—n' %

These values of x and y, with either value of 2, will give a

point of intersection wThen equation (1) is satisfied.

If m=m\ and n= n\ equation (1) is satisfied, and the values

of x, y, and z become infinite. The point of intersection is

then at an infinite distance; that is, the two lines are parallel.
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But when m=m/

, the projections of the two lines on the

plane xz are parallel, and when n— n r

the projections on the

plane yz are parallel. Hence, iftivo right lines in space are

parallel^ their projections on the same co-ordinateplane will

he parallel.

274. To find the equations of the straight line which passes

through a given point and is parallel to a given line. Let

x\ y\ z' be the co-ordinates of the given point. The equations

of the straight line passing through this point (Art. 271) are

x— x'= ?n(z—

z

f

),

and y—y'=n(z—z r

).

In order that this line may be parallel to a given line, its

projections on the co-ordinate planes must be parallel to the

projections of the former line (Art. 273) ; that is, they must

cut the axis of z at the same angle. The quantities m and n
therefore become known, and if we represent the tangents of

the given angles by mf and n\ we shall have

x—x'=m/(z—z%
y-y'=:n'(2--z'),

^

which are the equations of the required line.

Ex. Find the equation of a straight line which passes through

the point x f= 3, y
f= — 2, z

r= 1,

and is parallel to the line whose equations are

x= <iz+ 5, y=—z+ 3.

275. To find the relation which exists among the angles

which any straight line makes with the axes of co-ordinates.

Let a, j3, and y represent the angles which the straight line

makes with the axes of x, y, and z. From
the origin, draw a line AP parallel to the

proposed line ; the angles which it makes
c with the co-ordinate axes will be the same

as those made by the proposed line. In

AP take any point P, and from it draw a

line perpendicular to each of the co-ordinate planes. In the

L.
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triangle APG, right-angled at G, we have AG=AP cos. 7;
also, in the triangle APF, right-angled at F, we have AF—AP
cos. ]3 ; and in the triangle APE, right-angled at E, we have

AE=AP cos. a. But by Art. 265 we have

AE2+AF 2+AG2=AP 2

;

hence AP 2
cos.

2
a+AP2

cos.
2

j3+AP2

cos.
2

7=AP
2

;

or, dividing by AP 2

, we have

cos.
2

a+ cos.
2

/3+ cos.
2

y= 1

;

(1)

that is, the sum of the squares of the cosines of the angles

which any straight line maizes with the co-ordinate axes is

equal to unity.

If it is required to determine the value of each cosine, let

x= mz, y—nz^
be the equations of the line AP (Art. 271). Then

cos. a— Tn cos. 7, and cos.
fi
= n cos. 7.

Substituting these values in equation (1), we obtain

m2
cos.

2

7+ ri* cos.
2

7+ cos.
2

7= 1,

whence cos. 7:
Vni> +n

on

•+i'

~~Vm'l+ n''+1'

n

also, cos. a

and cos. i3 —H Vm2+n*±l
In these equations,m denotes the tangent of the angle which

the projection of the proposed line upon the plane xz makes

with the axis of z; and n denotes the tangent of the angle

which the projection on the plane yz makes with the axis of z.
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SECTION III.

OF THE PLANE IN SPA^E.

276. The equation of a surface is an equation which ex-

presses the relation between the co-ordinates of every point of

the surface.

Three points, not in the same straight line, are sufficient to

determine the position of a plane (Geom., Bk. VII., Prop. 2,

Cor. 1) ; hence, if we know the points where a plane BCD in-

tersects the three co-ordinate axes, the po-

sition of the plane will be determined.

The intersections of any plane with the

co-ordinate planes are called its traces.

Thus BC is the trace of the plane BCD
on the plane XY, BD is its trace on the

plane ZX, and CD is its trace on the plane

ZY.

277. To find the equation to a plane. Let AX, AY, AZ be

three rectangular axes, and let BCD be the plane whose equa-

tion is required to be determined. Let the plane intersect the

axes in the points B, C, D, and let AB be denoted by a, AC by

&, and AD by c. Take any point P in the given plane, and

through P draw the plane EGII
parallel to the co-ordinate plane

YZ, and cutting the given plane

and the other co-ordinate planes

in the triangle EGH. DrawPR
perpendicular to the plane YX.
Then will the co-ordinates of the

pointP be

x= AE, 2/=ER, and s=PE.
It is required to find an equation between these co-ordinates

and the intercepts a, &, and c.
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By similar triangles BAC, BEG, we have

BA:AC::BE:EG,
or a:b::a—#:EG.

OX
Hence EQt=6-—:

a'
J)X

also, KG=£—y—— >

Again, by similar triangles DAC, PEG, we have

DA:AC::PK:KG,

or c:o::z:o—y——

/

whence abz—abc—acy— hex,

or icx+acy+abz=zabc, (1)

or -+!+!=l, (2)

which is the equation of a plane in terms of its intercepts on

the three axes. This equation is similar in form to the equa-

tion of a straight line (Art. 42). If we represent the coefficients

of x, y, and z in eq. (1) by A, B, and C, this equation assumes

the form Ax+By+ Cz+D= 0, (3)

being a complete equation of the first degree containing three

variables, and this is the form in which the equation of a plane

is usually written.

278. Having given the equation ofajplane, to determine the

equations of its traces. Let the equation of the plane be

A#+By+Cte+D=0;
then, for every point in this plane which is situated likewise in

the plane of xy, that is, for every point in the trace on the plane

of xy, we must have s=0. Hence the equation of this trace is

Ax+By+T>= 0. (1)

In like manner, for every point in the trace on the plane of

xz, we must have y=0 ; hence the equation of this trace is

Ax+Cz+T>= 0. (2)

So also the equation of the trace on the plane of yz is

By+Cz+D= 0. (3)
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If in equation (1) we make ?/= 0, the resulting value of x,

viz., — -r-, will be the distance from the origin to the point where

the given plane meets the axis of x. If we make x=0, we

have y=— =d for the distance from the origin to the point

where the plane meets the axis of y. If in equation (2) we

make x= 0,we have z~ — p for the distance from the origin

to the point where the plane meets the axis of z.

If D= 0, the proposed plane must pass through the origin.

Ex. 1. Find the traces of the plane whose equation is

2x—Sy+Tz-r10=0.
Ex. 2. Determine where the plane whose equation is

3x+fy+ 5z— 60=
meets the three co-ordinate axes.

Ans. #=20, y=15, 3=12.

Ex. 3. Determine where the plane whose equation is

3£-.4?/+22+12=:0

meets the three co-ordinate axes.

279. Tofind the equation of theplane which passes through

three given points. If in equation (2), Art. 277, we represent

the coefficients of x, y, and z by M, N, and P, the equation of

the plane will become

Mx+Xy+Tz=l. (1)

Let the co-ordinates of the three given points be

x',y',z'; x",y",z"; x'",y'",z[".

Since the plane passes through the three given points, the

co-ordinates of each of these points must satisfy the equation

of the plane, so that we must have

M#'+]Ny+P3'=i,
Ms"+Ny"+P3"=l,

M£///+Jsy //+P3/// =i.

From these three equations the values of the three constants

M, N, and P may be determined, and if these values are sub-
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Btituted in equation (1), we shall have the equation of a plane

passing through the three given points.

Ex. 1. Find the equation of the plane passing through the

three paints

x'=l, */=-%, s'=_3.
®"=2, y"=l, s"=0,
«'"=_2, y'"=2, 0"'=-l.

^725. 6aj+ lly-133-23= 0.

Ex. 2. Find the equation of the plane passing through the

three points x'= 3, y'=%, £'=4,

®"=0, y"=4, 0"=1,
35'"= -2, y"'=l, ^"sO.

J.n*. lla>-3y-133+25 = 0.

280. T<9 determine the conditions which must subsist in

order that a straight line may be parallel to a plane. Let the

equations of the straight line be

x=mz+a, y—nz-\-b
y

and let the equation of the plane be

Aaj+By+Cte+D=0.
If through the origin we draw a straight line parallel to the

given line, its equations will be

x=mz, y—nz;
and if through the origin we also draw a plane parallel to the

given plane, its equation (Art. 278) will be

A#+B?/+Cfe:=0.

Now, if the first line be parallel to the first plane, the line

drawn through the origin must coincide with the plane drawn

through the origin; hence the co-ordinates x and y of this

straight line must satisfy the equation of the plane. If we
substitute the values of x and y in the equation of the plane,

we have Amz+ B?iz+ Cz= ;

or, dividing by z, we have

Am+Bn+G=0
3

which is the analytical condition that a right line shall be par-

allel to a plane.
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281. To determine the conditions which mast subsist in

order that two planes may be parallel. Let the equations of

the two planes be Ax+By + Cz + D =0,
A'x+B'y+C'z+iy=0.

The traces of these planes on either of the co-ordinate planes

must be parallel, otherwise the two planes would meet. The
equations of the traces on the plane of xz (Art. 2 78) areAD A/ W

Z— pi£ p ?
Z— ^,X— p/.

If these traces are parallel, we must have

A_A^
o~C"

Comparing the traces on the other co-ordinate planes, we shall

. B B' A A'
also nna -^—-^^ ^=g>.

The last equation could be derived from the two others, and

hence the three equations express but two independent condi-

tions.

282. Ifa straight line be perpendicular to aplane ^ the pro-

jection of this line on either of the co-ordinate planes toill be

perpendicular to the trace of the givenplane on that co-ordi-

nate plane.

Let MX be the co-ordinate plane, ABCD the proposed plane,

EH the line perpendicular to it, and

let GH be the projection of EH on

the planeMX. The projecting plane

EGH is perpendicular toMX ; and

since the line EH is in the plane

~a~" EGH, the plane EGII is perpendic-

ular to the plane BD (Geom., Bk.VIL, Prop. 6). Hence the

plane EGII is perpendicular to each of the planes MX and BD

;

it is therefore perpendicular to their common section AB
(Geom., Bk.VIL, Prop. 8). Hence AB, which is the trace of

the given plane on the plane MX, is perpendicular to the plane

EGII, and is therefore perpendicular to the line GH, which it
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meets in that plane (Geom., Bk.VIL, Def . 1) ; that is, GH,which
is the projection of the given line EH, is perpendicular to AB,
which is the trace of BD on the plane MN".

283. To determine the conditions which must subsist in

order that a straight line may beperpendicular to a plane.

Let the equation of the plane be

A£+ B?/+ C2+ D:=:0,

and let the equations of the projections of the straight line be

x=?nz+a, y=nz+b.
The equation of the trace of the plane on xz is

Az+Cs+D^O,
C D

or B==__3__:

The equation of the trace on yz is

By+Cz+D= 0,

C D

But since the projections of the line must be perpendicular to

the traces of the plane (Art, 282), we shall have (Art. 46)

A B
m= p, and n—^

which are the conditions required.

284. Tofind the equation of a plane that passes through a

givenpointy and is perpendicular to a given straight line.

Let x\ y \ z' be the co-ordinates of the given point, and let

the equations to the given line be

x—mz+ a^ and y= nz+h.

Also, let the equation of the plane be

Ax+By+Cz+D=zO.
Since the point (x\ y\ z') is in this plane, we have

Aaj
,+ By'+ C <s

/+D= 0;

hence A(x-x')+B(y— y') + C(z—2') = 0,

which is the equation of any line passing through the point

(x\ y
f

, z'). But by Art. 283 we have
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A= mC, and ~B=nC;
hence mC(x—x')+ nC(y—y')+ C(2—z')= 0,

or m(x— x')+ ?i(y— y')+ {z— z') = 0>

which is the equation required.

285. Tofind the equation ofa straight line drawnfrom the

originperpendicular to a givenplane, and determine its length.

Let the equation of the given plane be

A^+B?/+C2+D= 0. (1)

The equations of a line passing through the origin are

x—mz, y~nz.

But if this line be perpendicular to the plane, we must have
A B

(Art. 283) m= ™ and n=p

;

hence the equations of the line passing through the origin and

perpendicular to the plane are

As Bz

Those values of x, y, and z, which, when taken together, will

satisfy equations (1) and (2) at the same time, must be the co-

ordinates of a point common to the line and plane ; therefore,

by combining these equations, and deducing the values of x, y,

and z, we shall obtain the co-ordinates of the point in which

the line pierces the plane. The distance of this point from the

origin may then be found by Art. 265.

If P represent the length of the perpendicular, we shall have

p= d
VA,+B9+C'

Ex. 1. Find the equations of a straight line passing through

the origin and perpendicular to the plane whose equation is

2x-4y+z—8= 0.

Find, also, the point in which the line pierces the plane, and

find the length of the perpendicular.

Ans. The equations of the line are x— 2z, y——^z;
, i • .

16 32 8
it pierces the plane in the point #=q?> V— — ^rr> 2= 2i>

and the length of the perpendicular is

Viil
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Ex. 2. Find the length of the perpendicular from the origin

upon the plane whose equation is -.

2aM-3y+4s-12=0. Ans.-y=.

286. To find the equations of the intersection of two given

planes.

Let the equations of the two planes be

AaH-By+C3+ D=0,
A'»+B'y+C's+D'=a

If the given planes intersect, the co-ordinates of their line of

intersection will satisfy at the same time the equations of both

planes. If, therefore, we combine the two equations and elim-

inate z, we shall obtain an equation between x and y, which is

the equation of the projection on the plane xy of the intersec-

tion of the planes.

In a similar manner we may find the equation of the pro-

jection of the intersection on the plane xz. But the equations

to the projections of a line on two co-ordinate planes are the

equations to the line itself ; hence the two equations thus found

are the required equations to the intersection.

Ex. Find the equations to the intersection of two planes of

which the equations are

2x+ 5y-3z+ 6 = Q,

3x+ y + z +4= 0.

|Ute+ 8z +14=0,
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SECTION IV.

OF BUR] :
r REVOLUTION.

287. Definitions. A wZ/tf <>/" revolution is a solid which

may bo generated by the revolution of a plane surface about a

fixed axis.

A surface ofrevolution is a surface which may be generated

by the revolution of a line about a fixed a

The revolving line is called the generatrix^ and the line about

which it revolves is called the axis of the surface or solid, or

the axis of revolution. The section made by a plane passing

through the called a meridian section.

It follows from the definition thai "ion made by a

plane perpendicular to the fixed as circle whose centre

in that a

238. The number of solid-; of revolution is unlimited, but

the !j are of most frequent use are the cylinder^ con

sphere^ spJieroid,jwraboloid) and hyperboloid.

jatian to a surface of revolution i i \t when I

I revolution coincides with one of the co-ordinate

In the : Qg prob! ill suppose the axis of revolu-

ith the axis of 2, and the co-ordinate plan*

to be ber,

289. Tofind the equation to the

ofa right cylinder. A right cylinder m
be d to be generated by the revolu-

tion of an ; about one of . as

/ 1/ ( E of a re(

it i .t the oppo

plain that any point of CE, as I>
;

in it
'': of a circl

N M
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Let AX, AY, AZ be the rectangular axes to which the cylin-

der is referred, having the origin at the centre of the base of

the cylinder, and let the axis of z coincide with the axis of the

cylinder.

Let the co-ordinates of any point P on the surface be AH"=3,

XM= ;/\ and MP=yy then the square on XP= the sum of the

squares on XM and MP, or

FS*= x' + y\

But PX, which equals DX, is a constant quantity, and z may
have any value whatever, so that the equation of a right cylin-

der is xx +y'x— c
X

j z being late.

290. To find the equation to tht :-e ofa right a
A right cone may be supposed to be generated by the revolu-

tion of a right-angled triangle about one of its perpendicular

sides as an axis, the hypothenuse generating the curved surface,

and the remaining perpendicular side generating the base.

Let AC be the hypothenuse of a right-angled triangle, an 1

let it be revolved about AB as an axis

;

then any point of AC, as D, in its revolu-

tion will describe the circumference of a

circle.

Let the origin be placed at the vertex of

the cone, and let the axis of z coincide with

the axis of the cone ; then, as in Art. i

we shall have PX' = re*+ ?f.

Let v represent the angle BAC, or the

semiangle of the cone ; then

XP=XD =AX tang. CAB=AN
that is, x^+^— z2 tang. V,

which is the equation of the surface of a right cone.

If the generatrix AC is of indefinite length, the whole sur-

face generated consists of two symmetrical portions, each of

indefinite extent, lying on opposite sides of the vertex. E
of these portions is caJlc ne.

tang
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291. To find the equation to the surface of a sphere. The
sphere is supposed to be generated by the revolution of a semi-

circle about its diameter.

If the centre of the sphere be at the origin of co-ordinates,

then the co-ordinates of any point of the

sphere, as P, are PM, MN, and AN, and

we have

DN2=PN 2=NM2+MP2

;

also,

AD 2=AN2+ND 2=NM2+MP 2+AN\
Hence, putting r for AD, the radius of

the sphere, we have

x^+f+^= r%
which is the equation of the surface of a sphere.

292. To find the equation to the surface ofa prolate sphe-

roid. Spheroids are either prolate or oblate. A prolate sphe-

roid is supposed to be generated by the revolution of an ellipse

about its transverse axis. An oblate spheroid is supposed to

be generated by the revolution of an ellipse about its conjugate

axis.

Let BCE be an ellipse, and let it be revolved about its trans-

verse axis ; then any point of the circum-

ference, as D, in its revolution will de-

scribe the circumference of a circle.

Let the origin be placed at the centre of

the spheroid. The equation of an ellipse

(Art. 121) is ay+&V= a?b\

y =or
a'

where x represents AN, which is now to

be represented by z, and y represents NT),

the radius of the circle described by the

point D in its revolution.

Hence ND 2
^"'"

.

a
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But*

hence

ND2=NP 2=NM2 +MP2=z2+ ?/
2

;

a
or a2

(£
2+y2

) + 6V=^2

,

which is the equation of the surface of a prolate spheroid,

where a is supposed to be greater than b.

293. To find the equation to the surface of an oblate sphe-

roid.

Let the ellipse CBE be revolved about its conjugate axis

CE ; the point D in its revolution

will describe the circumference of a

circle. The equation of an ellipse is

x - y ,

where y represents AN, which is

now to be represented by 2, and x

represents ND, the radius of the

circle described by the point D in its revolution

Hence ND
But

hence

fl'}'-flV

M) 2=NP2=NM2+MP2=£2

+2/
2

;

or b\a?+ tf) + a*z*= a*b\

which is the equation of the surface of an oblate spheroid.

The equation of the prolate spheroid is sometimes written

x* y
7

z
2

F2+F2+a2
= 1

'

and that of the oblate spheroid,

x y z'

a2+ a2+
b

2
~~ :1.

In both cases a is supposed greater than b.

If in the equation of either spheroid we make a=b, we shall

have a.'+ y'+ 3' =7.*,

which is the equation of the surface of a sphere (Art. 291).

Km
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294. To find the equation to the surface of a paraboloid.

A paraboloid is supposed to be generated by the revolution of

a parabola about its axis.

Let BAC be a parabola, and let it be revolved about its axis

AB ; then any point on the curve, as D,

in its revolution will describe the circum-

ference of a circle. Let the origin be

placed at the vertex of the parabola, and

let the axis of the parabola be the axis of z.

The equation of a parabola (Art. 85) is

y^—^ax^

y/ where x represents AN, which is now to

be represented by z, and y represents ND.
Hence ND 2 :=te.

But ND 2=NP 2=NM2+MP 2=x2+

y

1

;

hence we have x'
2 +y'i

=4:az
y

which is the equation of the surface of a paraboloid.

295. Tofind the equation to the surface of an hyperboloid.

An hyperboloid is supposed to be generated by the revolution

of an hyperbola about one of its axes.

1st. We will suppose the hyperbola to revolve about its trans-

verse axis. Let CBD be an hyperbo-

la, and let it be revolved about its

transverse axis BE; then any point

on the curve, as D, in its revolution

will describe the circumference of a

circle. Let the origin be placed at

the centre of the hyperbola, and let

the transverse axis of the hyperbola

be the axis of z.

The equation of an hyperbola (Art. 170) is

where x represents AN, which is now to be represented by s,

and y represents ND.
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Hence

But

hence

ND,=NP,=NMJ+MF=aj,
+y';

to

or

which is the equation of the surface generated by revolving an

hyperbola about its transverse axis. If we suppose both branch-

es of the hyperbola to revolve, there will be generated two sur-

faces entirely symmetrical with respect to each other. This is

therefore called the hyperboloid of revolution of two sheets,

since it forms two surfaces entirely separate from each other.

If the asymptotes of the hyperbola also revolve around the

transverse axis, they will describe the surface of a cone with

two sheets. The surface of this cone will approach the surface

of the hyperboloid, and will become tangent to it at an infinite

distance from the centre.

2d. We will suppose the hyperbola to revolve about its con-

jugate axis. Let CBD be an

hyperbola, and let it be revolved

about its conjugate axis AE;
then any point on the curve, as

D, in its revolution will describe

the circumference of a circle.

Let the origin be placed at the

centre of the hyperbola, and let

the conjugate axis of the hyperbola be the axis of z.

The equation of the hyperbola is

ay+ cfO*

o~

where y represents AN, which is now to be represented by s,

and x represents KD.

Hence OT>*=^±^-.

But NDs=NP,=NM,+MP'=jB,
+y';

hence x'+y'- ~
,
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or a^-b\x2+f)=-ai

b%

which is the equation of the surface generated by revolving an

hyperbola about its conjugate axis. As both branches of the

hyperbola are symmetrical with respect to the conjugate axis,

each branch in its revolution will describe the same surface.

This is therefore called the hyperboloid of revolution of one

sheet, since it forms one uninterrupted surface.

The equations of the two hyperboloids of revolution are
2 2 2

z x y
sometimes written -^—tz—t5=1,a b b '

2 2 2
z x y .

and __+_+_=1}

where the minus sign in each case corresponds to an axis that

does not meet the surface.

296. To determine the curve which results from the inter-

section ofa sphere with a plane. Let d represent the distance

of the intersecting plane from the centre of the sphere ; let the

origin be at the centre of the sphere, and let one of the co-or-

dinate planes, as the plane of xy, be parallel to the cutting

plane ; then every point in the intersecting plane will be given

by the equation z—d, and we must have

x*+y*+d*=r% i

or x*+y2 =:r*—d%

which represents all the points on the surface of the sphere

which are also common to the plane. This equation represents

a circle whose radius is Vr2—d*+ Hence every section of a

sphere made by a plane is a circle.

Ex. A sphere wThose radius is 10 inches is cut by a plane

whose distance from the centre of the sphere is 6 inches. De-

termine the radius of the section.

297. To determine the curve which results from the inter-

section ofa right cylinder with a plane. Every section of a

right cylinder made by a plane parallel to the base is a circle

;

we will therefore suppose the section to be made by a plane
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inclined to the base. Let APB be such a section, and let ABC
be a section of the cylinder through its axis, and perpendicular

to the plane of the former section. Draw a

plane perpendicular to the axis of the cylin-

der, intersecting the cylinder in a circle whose

diameter is DE, and intersecting the first

plane in PM, which will therefore be perpen-

dicular both to AB and DE, and will be an

ordinate common to the section and the circle.

. Let AM=a?, PMrry, AB= 2#, AC=2^; then BM=2#-#.
We have y

1=DM . ME (Geom., Bk. IV., Prob. 23, Cor.) ; but

by similar triangles we have

AB:AC:
TX

: AM : MD, whence MD =-
a 7

also

Whence

AB : AC : : BM : ME, whence ME=-(2a- a?).

y^-Qax-x*),
to

which is the equation of an ellipse (Art. 129).

Hence every section of a right cylinder made by a plane in-

clined to its base is an ellipse.

Ex. A right cylinder whose diameter is 10 inches, is cut by

a plane making an angle of 30° with the axis of the cylinder.

Determine the equation of the elliptic section.

298. To determine the curve

which results from the intersec-

tion ofa right cone with aplane.

Let VBGC be a right cone,V the

vertex,YH the axis, andBGC the

circular base. LetAP be the line

in which the cutting plane meets

the surface of the cone, and let

YBHC be a plane passing through

the axis VII, and perpendicular

to the cutting plane AMP. AM,
the intersection of these planes,
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is a straight line ; and, since the curve is symmetrical with re-

gard to it, it is called the axis of the conic section.

LetDPE be a section parallel to the base ; it will be a circle,

and DME, its intersection with the plane YBIIC, will be a

diameter.

Since the plane DPE and the plane PAM are both perpen-

dicular to the plane YBHC, MP, the intersection of the two

former, is perpendicular to the third plane, and therefore to

every straight line in that plane. It is therefore perpendicu-

lar to DE and to AM. Draw AF parallel to DE, and ML
parallel to VB, and let it meetVC in 1ST.

Let AM=tf, PM=?/, VA=a; let the angle CYH=j3, and

the angleYAM, which is the inclination of the cutting plane to

the side of the cone, = 0; then the angle AMN=18O°-0-2/3.
x sin

Now AM : ME : : sin. AEM : sin. MAE. whence ME= ~

:

? cos.p '

also, DM=FL=AF-AL=2& sin. /3-AL, and

AM : AL : : sin. ALM : sin. AML,whence AL^ Sm'^
;5 cos. p

therefore DM— 2a sin. ft— x———^—

.

' cos. p
But by Geom.,Bk. IY., Prob. 23,

MP 2=DM. ME;
x sin. i . x sin. (0 + 2/3)

)

-

which is the equation of the curve resulting from the intersec-

tion of the cone by a plane.

Comparing this equation with the equation y*=mx+ ?ix'
i

(Art. 234), which represents an ellipse, hyperbola, or parabola,

according as n is negative, positive, or zero, we see that the sec-

tion is an ellipse, hyperbola, or parabola according as the co-

efficient of the last term of the equation is negative, positive,

or zero. In order to investigate these cases, we will suppose

the cutting plane to turn about A, so as to make all possible

angles with the side of the cone.
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299. Discussion of the equation to a conic section. Equa-

tion (1) of Art. 298 will represent in succession every line

which it is possible to cut from a given right cone by a plane,

if we suppose j3 to remain unchanged, while all values are as-

signed to from to 180°, and all values to a from to in-

finity.

Case first. Let = 0; then equation (1) reduces to y
2= 0.

This is the equation to the straight line which is the axis of x,

and we see from the figure that when 0=0 the cutting plane

becomes tangent to the cone, and the line AM coincides with

AV. In this case the section is said to be a straight line.

The same case occurs when 0=:18O .

Case second. Let 0+2j3<18O°; then sin. (0+ 2/3) will be pos-

itive ; moreover, sin. is positive so long as is supposed to be

comprised between and 180°, and cos.
2

j3 is necessarily posi-

., . sin. sin. (0+ 2/3) .
f

. . '. mtive ; hence — ^ is negative, and equation (1)

assumes the form y*=mx—nx*,
which is the equation of an ellipse. We see from the figure

that in this case the angles YAM and AYF, or ANM, are to-

gether less than 180°; hence the lines VF and AM, if pro-

duced indefinitely towards the base of the cone, will meet

;

that is,,the sectional plane cuts both sides of the cone. Hence

the section is an ellipse when the cutting plane meets both

sides of the cone. See fig. Art. 301.

Case third. In the preceding case the angle may be equal

to the angle VAF, or 90°-j3,in which case + 2/3= 9O°+ /3,

and equation (1) reduces to y
2= 2ax sin. ]3—

#

2

, which is the

equation of a circle (Art. 63). We see that in this case the

cutting plane is parallel to the base, and hence the ellipse be-

comes a circle when the cutting plane is parallel to the base

of the cone.

Casefourth. Let + 2/3= 180°; in this case, sin. (0+ 2j3)= O,

and equation (1) becomes

# = 2ax sin. tang. /3,

which is the equation of a parabola (Art. 85). AVe see that in
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this case 180°— 0—2/3— 0; that is, the angle AMN is zero, or

the cutting plane is parallel to the side of the cone. Hence the

section becomes a parabola when the cutting plane and the side

of the cone make equal angles with the base (see fig., Art. 301).

Casefifth. Let + 2/3>18O°; then sin..(0+2j3) will be neg-

ative, and — sin. (0+ 2/3) will be positive, and equation (1) as-

sumes the form y
1=mx+ nx*,

which is the equation of an hyperbola. We see from the fig-

ure that in this case the angles VAM and ANM are together

greater than 180° ; hence the lines YB and AM, though pro-

duced indefinitely towards the base of the cone, will not meet,

but if these lines are produced in the opposite direction they

will meet ; that is, the cutting plane intersects both cones, and

the curve consists of two branches, one on the surface of each

cone.

When 0=180°, the line AM produced returns to the same

position which it had when 0=0 ; and when becomes greater

than 180°, the line AM assumes the same positions already de-

scribed. We therefore obtain all the possible positions of the

line AM by supposing to be comprised between the limits

a^nd 180°.

300. Result of a change in the value of a. The preceding

results remain unchanged so long as a remains finite. When
a becomes zero, the cutting plane passes through V, the vertex

of the cone, and equation (1) becomes

sin. ^.(1,4-2)3)
J

cos.
2

]3
v '

This equation furnishes three cases

:

Case first Let 0+2/3<18O°; then -sin. (0+2/3) will be

negative. In this case equation (2) can only be satisfied when
x—0^ y—Q, which are the equations of a point. A point is

then to be regarded as a particular case of the ellipse. This

case happens when the cutting plane, passing through the ver-

tex V, occupies a position within the angl#BVC'.

Case second. Let + 2/3= 180°; then sin. (0+ 2/3)= O, and
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equation (2) reduces to 2/

2= 0. The section then becomes a

straight line, or it may be regarded as a double line, since the

equation may be written y=±0. A straight line (or a double

line) is then a particular case of the parabola.

Case third. Let + 2/3>18O°; then— sin. (0+ 2/3) will be

positive, and equation (2) assumes the form

which represents two intersecting straight lines. This case

happens when the straight line AM, passing through the ver-

tex V, meets BC between the points B and C. The cutting

plane then meets the surface of the cone in two straight lines

which pass through V. Two intersecting straight lines are

then to be regarded as a particular case of the hyperbola.

301. Results of the preceding discussion. It appears from

the preceding investigation that if a right cone be cut by a

plane, the section will be

(1) A parabola when the plane makes

an angle with the axis equal to half the

vertical angle of the cone.

The particular case is a double line.

(2) An ellipse when the plane cuts

only one sheet of the cone.

The particular cases are a point and a

circle.

(3) An hyperbola when the plane cuts

both sheets of the cone.

The particular case is two straight

lines which intersect one another.

302. To determine the curve which results from the inter-

section ofany surface ofrevolution by a plane. The sections

of a surface made by the co-ordinate planes are called the prin-

cipal sections of the surface, and the boundaries of the princi-

pal sections are called the traces of the surface on the co-ordi-

K2
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nate planes. The equation to a trace is determined by putting

the ordinate perpendicular to the plane of the trace =0 in the

general equation (Art. 278). If, then, the cutting plane coin-

cided with one of the co-ordinate planes, we could easily find

the trace of the given surface upon that plane, and this would

be the required curve of intersection. We may make the cut-

ting plane coincide with one of the co-ordinate planes by a

transformation of the co-ordinates. In the case of a surface

of revolution, we may proceed as follows

:

Through AZ, the axis of revolution, draw a plane perpen-

dicular to the proposed section, and

call this the plane xz, the origin be-

ing at A in the plane XAZ. Let

AX! represent the intersection of the

cutting plane with the plane xz. The
lines AX7 and AY will then be per-

ri pendicular to each other, and both

will be in the cutting plane.

Let P be any point of the curve of intersection, and from P
drawPM perpendicular to the plane xy, and from M draw MN
perpendicular to AX. The co-ordinates of P referred to the

primitive axes are

z=AN, y=MN, 2=PM.
Let the point P be now referred to the two axes AX', AY,

which are in the plane of the given section. Through P draw

PR perpendicular to AY, and join MR The angle PRM,
which we will denote by 0, is the angle which the cutting

plane makes with the plane xy. The co-ordinates of P referred

to the new axes are

#'= PR, 2/'=AR=zMN, s'=0.

In the right-angled triangle PMR we have

EM=AN=PR cos. PRM, or x=x' cos. 0,

PM= PR sin. PRM, or z=x' sin. ;

also we have MN=AR, ovy— y\

If the origin be changed to a point in the plane xz whose co-

ordinates are x— an y— y
z= cn
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these equations become x=a, + x' cos. 0,

z= c,+ x' sin. Q.

If tliese values be substituted for x, y, and z in the equation

of the given surface, the result can only belong to points com-

mon to the surface and the cutting plane, and will therefore

represent the required curve of intersection.

303. To determine the curve of intersection of aplane and
a prolate spheroid.

The equation of the given surface (Art. 292) is

J l

a*

Substituting the values of x, y, and z found in Art. 302, this

equation becomes

(a,+x cos. Oy+y2+—(c,+ x sin. 6y= b%

or #2

(cos.
20+— sin.

2

0) + y
2+ 2x(-r sin. 6 +a

/
cos. 0)a a

=v-a;-
bX (1)

' a

Suppose now the origin to be placed on the surface of the

spheroid, and in the plane xz. The section of the spheroid by

the plane xz is equal to the generating ellipse ; hence the co-

ordinates of the origin must satisfy the equation of the ellipse

;

that is, we must have

or y_a » ^-= o.
' a

The second member of equation (1) reduces therefore to

zero, and the equation is of the form
y^—mx—nx 1

,

and therefore represents an ellipse. If = 0, the equation be-

comes y*= 2ax—x'i

,

which is the equation of a circle.

Hence every section of a prolate spheroid by a plane is an
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ellipse, except when the cutting plane is perpendicular to the

axis of revolution, when the section becomes a circle.

The same is true of the sections of an oblate spheroid.

Ex. The two axes of a prolate spheroid are 8 and 6, and the

spheroid is cut by a plane passing through the extremities of

the axes, and perpendicular to their plane. Required the axes

of the curve of intersection. Ans. 5 and 3V2.

304. To determine the curve of intersection ofaplane and
aparaboloid ofrevolution. The equation of the given surface

(Art. 294) is x2+ y'= ^az.

Substituting the values of x, y, and z given in Art. 302, this

equation becomes

(a,+x cos. 6y+y
2
=4ca(c

/
+x sin. 0),

or x2
cos.

2

0-f-?/
2+ (2#/

cos. 0—4# sin. 0)x=4:ac,—a*. (1)

Suppose now the origin to be placed on the surface of the

paraboloid, and in the plane xz; the co-ordinates of the origin

must satisfy the equation of the generating parabola, and we
must have a/

=

±acn or 4ac,— 0/= 0.

Equation (1) therefore reduces to the form

y
2=zmx— nx*,

and generally represents an ellipse. If 0=0, the equation be-

comes y
2 =:2ax—x'i

,

which is the equation of a circle.

If 0=90°, the equation becomes

y*=4:ax
y

which is the equation of a parabola. Hence the section of the

paraboloid by a plane is a parabola, when the plane is parallel

to the axis of revolution ; it is a circle when the plane is per-

pendicular to this axis ; and in all other positions of the cutting

plane the section is an ellipse.

Ex. A paraboloid whose axis of revolution is 45-?-, and its base,

or greatest double ordinate, 32, is cut by a plane passing through

the edge of the base, and meeting the opposite side of the solid

at the height of 20 above the base. Required the axes of the

section. Ans. 34.4 and 28.
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305. To determine the curve ofintersection ofa plane and
an hyperboloid of revolution. We will suppose the solid to be

the hyperholoid of two sheets (Art. 295). The equation of the

b
2

given surface is x2+ y
2——

%z
2= —b

2
.

Substituting the values of x
} yy

and z given in Art. 302, this

equation becomes

b
2

(a
y
+x cos. 6)

2+y2— -*(c,+x sin. 0)
a= — J

9

,a
7 2 72

or a;
5
(cos.

20--
2 sin.

5

0) +tf- 2z(-r sin. 0-«, cos. 0)

b'c*
=-#-*-«/• (1)

If we place the origin on the surface of the hyperboloid, and

in the plane a&, the second member of this equation reduces to

zero, and the equation is of the form

?/
2=m#— nx2

.

If 0=0, the equation becomes

y
2=2ax—

x

2

,

which is the equation of a circle.

If 0=90°, the equation becomes

y
2~(x2

+2c,x),

which is the equation of an hyperbola.

If tang. 0=t, the equation reduces to

y
2= 2x(c

/
cos. cotang. 0— #, cos. 0),

which is the equation of a parabola.

a2 a2

If tang.
2

0<Ta-, the curve is an ellipse; if tang.
2

0>^, the

curve is an hyperbola.

In every case the section of the hyperboloid by a plane is

similar to the corresponding section of the cone formed by the

revolution of the asymptotes of the hyperbola (Art. 295).
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306. Summary of the preceding results. The equation to

the surface of an oblate spheroid (Art. 293) may be written

x* ?/ £
-i+^+r*=1 5 (1)a a b '

w
and that of a prolate spheroid,

The equation to the surface of an hyperboloid of one sheet

r2
?y

2 s2

(Art. 295) is ^+|i-ji=l, (3)

and that of an hyperboloid of two sheets is

The equation to the surface of a right cone (Art. 290) is

x*+y*—z* tang.
2
^= ;

if we divide oy aQ

, and put V for -—^-5-, the equation becomes

-5+^-5=0. (5)a a v J

The equation to the surface of a paraboloid (Art. 294) is

#*+ 2/

2—4a£=0;

if we divide by a*, and put 5 for 7, the equation becomes

^!+^_5;= o. (6)a a b w
In each of these six equations the coefficients of a? and y*

are equal, which shows that for each of these solids a section

perpendicular to the axis of z is a circle.

307. More generalform of the preceding equations. If we
suppose the coefficients of x* and y* in either of these equations

to be unequal, we shall have a new equation similar in form to

the preceding, but representing a more complex surface. The
x* ?/ 2

2

equation _+-+ -= l (1)

represents a surface similar in some respects to that of the
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spheroid, but its intersection with a plane perpendicular to the

axis of z is an ellipse instead of a circle. All sections made
by parallel planes are similar ellipses, and the surface is closed

in every direction. This solid is called an ellipsoid, and has

three unequal axes. When two of the axes are equal to each

other it is called an ellipsoid of revolution, because it may be

generated by the revolution of an ellipse about one of its axes.
2 2 2

The equation
a^
+
l/~"?

= 1 ^
represents a surface like the hyperboloid of one sheet, except

that the sections perpendicular to the axis of z are ellipses in-

stead of circles.
2 2 2

£P ?/ Z
So also the equation -5+~—-2

= — 1 (3)
CL C

represents a surface like the hyperboloid of two sheets, but the

sections perpendicular to the axis of z are ellipses.
2 2 2

__ . x y z ^
The equation -,+p

—
-5= (4)

represents a conical surface, but the cone has an elliptic base

instead of a circular one.

The equation —+^—-= (5)

represents a surface like the paraboloid of revolution, except

that a section perpendicular to the axis of z is an ellipse in-

stead of a circle. This solid is called an elliptic paraboloid.

Each of these surfaces may be conceived to be derived from

the corresponding surface of revolution by increasing or dimin-

ishing the values of y in a constant ratio, in the same manner as

oblate and prolate spheroids may be derived from the sphere

by multiplying the values of y by a constant factor, or as the

ellipse may be derived from the circle by multiplying the values

of y by a constant factor.

^308. Surface of a cone asymptotic. The conical surface

represented by the equation222
X V Z

r,
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is asymptotic on the one side to the hyperboloid of one sheet
2 2 2

Cu 7J 2/

whose equation is -5+za—-*=1,

and on the other side to the hyperboloid of two sheets whose

equation is

There is also a similar relation between the equations of two

conjugate hyperbolas and the equation of their asymptotes.

The equation of an hyperbola (Art. 170) may be written

and the equation of its conjugate hyperbola (Art. 179) is

a' V~ '

while the equation of their asymptotes (Art. 214) is

or
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SECTION V.

GENERAL EQUATION OF THE SECOND DEGREE BETWEEN THREE

VARIABLES.

309. The general equation of the second degree between

three variables is of the form

ax*+bxy+cy2+ dz*+ exz-]-fyz+gx-\-hy+Jcz+ l=0. (1)

We may transform this equation into another, in which the

axis of z remains unchanged, by employing the equations of

transformation for plane co-ordinates (Art. 55), and we shall

have z— z'

x—x f

cos. 0— y' sin. 9

y~x' sin. Q+ y
f

cos. 0.

If we substitute these values of the variables in equation (1),

the only terms in the resulting equation which can contain the

product x'y' will come from the three terms ax*+ bxy+ cy\

The term containing xy may therefore always be made to dis-

appear from equation (1) by the method explained in Art. 230.

So, also, the term containing xz may always be made to dis-

appear by a new transformation, in which the new axis of y
remains unchanged ; and in the same manner the term con-

taining yz may be made to disappear. Hence equation (1) can

always be transformed into an equation of the form

Ax'+ By'+Cz'+Bx+Ey+Fz+G^O. (2)

If, in equation (2), neither A, B, nor C is zero, we may, as in

Art. 229, cause the terms containing the first powers of x, y,

and z to disappear by changing the origin of the co-ordinates,

and the equation will be reduced to the form

Lz2 +H*/2+IsV+P=0. (3)

310. Classification of the surfaces represented by the equa-

tion (3). In discussing equation (3) we must suppose each of

the coefficients to be either plus or minus, and we must also

consider the case in which P reduces to zero. Now two of the
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coefficients L, M, and 1ST must always have the same sign ; we
will suppose that L and M have the same sign, and will make
these signs positive. We may then have the six following

cases

:

1. When N is plus and P minus. Equation (3) will then

take the form Lz2+My2+Ns2-P= 0.

P P P
If we divide by P, and put a*= y-3 ^—^ and c*= t^j we shall

x' f z
2

,have "~a+w+-2=l 5

which is the equation of the surface of an ellipsoid (Art. 307,

eq.l).

2. When N is phis and P plus. Equation (3) will then be-

come L#2+ M?/2 +]NV+P=0,
in which all the terms are positive. Hence the equation can

not be satisfied for real values of the variables, and therefore

the surface becomes imaginary.

3. When N" is plus and P is zero. Equation (3) will then

become Lx'+My*+Ns2= 0,

which can only be satisfied by the values

oj= 0, y=®, z= 0;

and hence this supposition reduces the surface to B,jpoi?it,\iz.
y

the origin.

4. When N is minus and P is minus. Equation (3) will then

become L^2+My2-IsV-P= 0.

P P P
If we divide by P, and put aa=y 3 ^^lyf? an^ c<i=w we s^ia^

#2

y
1

2
2

have —^+Ti— -1= 1,

which represents the surface of an hyjperboloid of one sheet

(Art. 307, eq. 2).

5. When N is minus and P is plus. Equation (3) becomes

Lz2+ Mt/2-1sV+P= 0.

Substituting as before, we have
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which represents the surface of an liyperboloid of two sheets

(Art. 307, eq. 3).

6. When N is minus and P is zero. Equation (3) becomes

LB'+My'-Ne'zzOj
which by substitution becomes

x y z

which represents the surface of a cone having an elliptic base

(Art. 307, eq. 4).

311. Particular cases of the general equation. If both

terms containing one variable, as z, are wanting from eq. (2),

Art. 309, that is, if C and F are zero, all sections of the surface

perpendicular to the axis of z are equal to each other, since the

equation is independent of z. The common equation of these

sections is Ax*+By2 +Dx+Ey+ Gr= 0,

which may represent either of the conic sections (Art. 233).

This surface is called a cylindrical surface, and may be de-

scribed either

—

1. By the above-named conic section moving always parallel

to itself and along a right line parallel to the axis of z, or

2. By a straight line which moves along the conic section,

and in all of its positions is parallel to the axis of z.

The conic section is called the base of the cylinder, and the

cylinder is called circular, elliptic, hyperbolic, orparabolic, ac-

cording to the nature of the base.

When the equation Ax*+ By* -\-Dx+T£y+G= represents

two straight lines (Art. 233), the cylindrical surface becomes

two planes, which may intersect or be parallel, or may coincide

as a double plane.

When two of the three coefficients A, B, and C in eq. (2),

Art. 309, are zero, as B and C, one of the corresponding terms

~Ey and Yz may be made to disappear by a transformation

in which x remains unchanged, but the axes of y and z are

changed in the plane yz, and the resulting equation is that of

a cylinder, as above.



236 ANALYTICAL GEOMETRY.

312. Elliptic and hyperbolic paraboloids. The only re-

maining case of eq. (2), Art. 309, is when two of the coeffi-

cients, as A and B, are finite, and the third is zero. The first

powers of x and y can then be made to disappear by changing

the origin of x and ?/, and the constant term may be made to

disappear by changing the origin of z. The equation will then

become A^+B^+F^O,
x* li

1
%

which may be written -5

+

ts+-= 0.

If A and B have like signs, the surface is that of an elliptic

paraboloid ; if A and B have unlike signs, every cross section

perpendicular to the axis of 2 becomes an hyperbola, and the

surface is called an hyperbolic paraboloid.

313. How an elliptic or hyperbolic paraboloid may be de-

scribed. A parabola may be regarded as the limiting case of

an ellipse, one vertex of which is fixed, and the other is re-

moved to an indefinitely great distance. So, also, the elliptic

paraboloid may be regarded as an ellipsoid, one of whose axes

has been indefinitely incro&sed, while one vertex of that axis

remains fixed.

The elliptic paraboloid may be regarded as described by one

parabola moving upon another. Thus, let the plane of one

parabola be at right angles to the plane of another; let the

axes of the two parabolas coincide, and the concavities be

turned in the same direction. Then, if one of the parabolas

move so as to be always parallel to itself and to have its vertex

upon the fixed parabola, the surface described by the movable

parabola will be an elliptic paraboloid.

But if the concavities of the two parabolas are turned in op-

posite directions, the corresponding surface thus described will

be an hyperbolic paraboloid.

314. Section of a surface of the second degree by a plane.

Every intersection of a plane with a surface of the second de-

gree is either a straight line or one of the conic sections.
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For by one or two transformations of co-ordinates like those

of Art. 309 we can refer the surface to a new system of co-or-

dinates, one of which, as 2, will be parallel to the given inter-

secting plane. In these transformations it is evident that the

degree of the equation can not be increased, since the values

substituted for x, y, and z are always of the first degree. If

now we substitute for z in the transformed equation the dis-

tance of the intersecting plane from the plane a??/, we shall

have an equation between x and y, which is the equation of

the intersection of the plane and surface. The degree of this

equation does not exceed the second, and therefore (Art. 233)

the curve must be either a straight line or a conic section.

The conic section may, however, in special cases, break up

into two lines, as shown in Art. 233.





APPENDIX.

ON THE GRAPHICAL REPRESENTATION OF NATURAL LAWS.

TnE mutual dependence existing between any two or more

variable quantities may be exhibited by means of curve lines.

If, for example, we have a large collection of meteorological

observations showing the temperature at any place for each

hour of the day, the nature of the relations or laws expressed

by these numbers may be represented by curve lines. Such a

mode of representation frequently renders these laws perfectly

obvious, and sometimes suggests relations which might easily

have been overlooked in a large mass of figures arranged in

tables. There is a great variety in the modes by which this

representation may be effected. The following are some of

the methods most frequently employed

:

I. Relations of two variables expressed by rectangular co-

ordinates. If on a horizontal line we set off distances propor-

tional to the values of one of the two variables, regarding these

as abscissas, and from the several points of division erect per-

pendiculars whose lengths are proportional to the correspond

ing values of the other variable, and then draw a continuous

curve line through the extremities of these perpendiculars,

this curve line may be regarded as representing the relation

between the two variables. The cases of this nature most fre-

quently occurring are those in which time is one of the varia-

bles, and this is usually laid off upon the axis of abscissas.

Ex. 1. Diurnal change of temperatwe. Let it be proposed

to construct the curve which represents the relation between

the different hours of the day and the corresponding mean
temperature at a given place. The following table shows the
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mean temperature at New Haven for each hour of the day, as

deduced from a long series of observations

:

Hour. Temp. Hour. Temp. Hour. Temp. Hour. Temp.

Midnight 45°.0 6 A.M. 43°. 1 Noon. 55°. 3 6 P.M. 52°.0

1 A.M. 44 .3 7 " 44 .6 1P.M. 56 .1 7 " 50 .2

2 " 43 .6 8 " 46 .9 2 " 56 .5 8 " 48 .7

3 " 43 .1 9 " 49 .7 3 " 56 .3 9 " 47 .5

4 " 42 .7 10 " 52 .2 4 " 55 .4 10 " 46 .5

5 " 42 .6 11 " 54 .0 5 " 53 .9 11 " 45 .7

—
rS

y
' SX

/ \
/ \

/ \
j / X,
/ ^>

m't2h. 4 6 8 10 noon 2h. 4

In order to represent these observations by a curve line, we
draw upon a sheet of pa-

per a horizontal line, and

divide it into twenty-four

equal parts, to represent

the hours of the day, and

through these points of

s lom't division we draw a system

of vertical lines. Upon each of these vertical lines we set off a

distance proportional to the height of the thermometer for the

corresponding hour, and then connect all the points thus de-

termined by a continuous line. The curve thus formed repre-

sents the mean motion of the thermometer at New Haven for

the different hours of the day, and, if constructed with proper

care, and upon a scale of suitable size, may supply the place of

the numbers from which it was derived, the temperatures being

indicated by the numbers on the left of the diagram. In order

to avoid confusion, the ordinates in the diagram have only been

drawn for the alternate hours.

We readily perceive from the figure that on each day there

is a maximum and a minimum of temperature, the maximum
occurring generally about two hours after noon, and the mini-

mum about an hour before the rising of the sun. We see, also,

that the temperature is increasing during nine hours of the day,

and decreasing during the remaining fifteen hours of the day.

This curve readily shows us the two periods of the day when
any given temperature is attained ; as, for example, a tempera-

ture of 50°, 52°, etc. It also shows, not only the mean tern-
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perature at the hours of observation, but also for any time

intermediate between these hours; as, for example, for each

half hour, or quarter hour, etc.

Ex. 2. Annual change of temperature. In the same man-

ner we may construct the curve representing the connection

between the different months of the year and the correspond-

ing temperature at a given place. We draw a horizontal line,

and divide it into twelve equal parts, to represent the months

of the year, and through these points of division draw a system

of vertical lines, upon which we set off distances proportional to

the heights of the thermometer for the corresponding months.

The following table shows the mean temperature of New
Haven for each month of the year, as deduced from a long

series of observations. It also shows the average maximum
temperature of each month, and the average minimum tem-

perature of each month

:

Mean Maximum Minimum Mean Maximum Minimum
Temp. Temp. Temp. Temp. Temp. Temp.

Jan...

.

26°.5 49°.6 -1°.0 July.. 71°.7 90°. 8 52°.8

Feb.... 28 .1 51 .3 + 1 .0 Aug.. 70 .3 88 .6 50 .0

March. 36 .1 61 .6 10 .7 Sept.. 62 .5 83 .6 37 .6

April.

.

46 .8 72 .6 25 .4 Oct... 51 .1 73 .2 26 .7

May... 57 .3 81 .3 35 .5 Nov.. 40 .3 63 .2 17 .7

June .

.

67 .0 89 .3 45 .9 Dec. 30 .4 53 .1 4 .5

In the annexed fig-

ure, the middle curve

line shows the mean
temperature of each

month of the year, ac-

cording to the preced-

ing observations,while

the upper curve shows

the average maximum
temperature, and the 20

lower curve the aver- 10

age minimum temper-

ature for each month

of the year.
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These curves inform us that at Is ew Haven the warmest

months of the year are July and August, and the maximum for

the year occurs near July 24th. The coldest month of the

year is January, and the minimum for the year occurs near

Jan. 21st. The difference between the minimum and the max-

imum for each month is greater in the cold months than in the

warm months. Various other particulars respecting the con-

nection between the temperature and the season of the year

are also exhibited by the figure more palpably than by a col-

umn of numbers in a table.

The same mode of representation may be employed to ex-

hibit the relation between the height of the barometer and the

hour of the day or the season of the year; also for the amount

of vapor in the atmosphere, the force of the wind, the fall of

rain or snow, the prevalence of cloud or fog, the intensity of

atmospheric electricity, the declination or dip of the magnetic

needle, or the intensity of terrestrial magnetism, or, indeed, any

natural phenomenon which depends on the course of the sun.

Ex. 3. Display ofNovember meteors. On the morning of

Nov. 14, 1866, a remarkable display of meteors was witnessed

in England, and the sudden increase, as well as the equally sud-

den decline in the number of meteors, is exhibited by a curve

line much more strikingly than could be done by a simple nu-

merical statement. For this purpose we draw a horizontal

line, and divide it into equal parts, to represent the hours of

observation, and through the points of division we draw a sys-

tem of vertical lines. On these vertical lines we set off dis-

tances proportional to the number of meteors counted eacli

minute, and through the points thus determined we draw a

continuous curve line. The numbers on the left margin of

the figure on the opposite page indicate the number of meteors

visible each minute. From the diagram we perceive that be-

fore midnight the number of meteors did not exceed 5 per

minute, but soon after midnight the number rapidly increased,

and at lh. 20m. exceeded 120 per minute ; by 2 A.M. it had de-

clined to 40 per minute, and by 3 A.M. to 10 per minute.
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A similar mode of representation may be advantageously

employed to exhibit the results of a large mass of observations,

even though we have no previous knowledge of the laws which

govern their changes. We may thus exhibit the influence of

the day or the season of the year upon mortality ; we may ex-

hibit the average number of deaths at different ages ; or we
may exhibit the fluctuations in the price of any article of mer-

chandise, as wheat, cotton, gold, etc.

Ex. 4. Annual change in the depth ofrivers. The depth of

the water in the Mississippi River fluctuates greatly with the

season of the year. During the early part of autumn the water

is usually lowest, and it is highest some time in the spring or

the early part of summer. The figure on the following page

shows the average result of twenty-three years of observations

on the river at Katchez, Miss. The months are shown at the

bottom of the figure, while the depth of water is indicated by

the numbers on the left margin.

We see from this figure that the water is usually lowest in

October, when its depth is only 12.5 feet. From this time the

water rises pretty steadily to the first of May, when the depth

amounts to 48.3 feet, from which time it declines pretty steadily
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till the following Oc-

tober. There are,

however, two small-

er maxima which are

well marked,viz.,one

about the 1st of Feb-

ruary, and the other

about the middle of

June. These great

fluctuations of the

Mississippi are due

not so much to an

excess of rain near

the time of maxi-

mum height as to

the melting of the

snow accumulated

upon the numerous

tributaries of this

river.

Ex. 5. Velocity of
the current ofa riv-

.

Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Xov. CT at different deaths.

It has been found by experiment that the velocity of the cur-

rent in rivers varies sensibly with the depth. This may be

shown by means of floats immersed to different depths in the

water. The following is one mode of performing the experi-

ment : A keg 15 inches high and 10 in diameter, without top

or bottom, is ballasted with lead so as to sink and remain up-

right in the water ; the keg is attached by a small cord to a

mass of cork 8 inches square and 3 inches thick, and a small

flag is supported by the cork, in order that it may be more

readily observed at a distance. By varying the length of the

cord, the keg may be made to sink to any required depth, and

its size is so much greater than that of the surface-float that

the latter does not sensibly affect the rate of movement.
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Surface Z.r>

The apparatus being placed in the water, its rate of motion

is determined by observers stationed on the bank of the river

at known distances from each other, and watching the progress

of the float by means of theodolites.

The curve line on the annexed figure shows the result of

experiments made on the cur-

rent of the Mississippi near New
Orleans. The numbers on the

left margin show the depth of

the keg, expressed in tenths of

the entire depth of the river, the

mean depth of the water being

86 feet. The numbers at the

top of the figure show the ve-

locity of the current, expressed °-:
-

in miles and tenths of a mile

per hour.

TTe see from the figure that

the velocity at the surface is

3.74 miles per hour ; the velocity increases as we descend, until

we reach a depth about one third that of the river, where the

velocity amounts to 3.S4 miles per hour, while below this depth

the velocity diminishes, and at the bottom of the river is re-

duced to 3.47 miles per hour.

Ex. 6. Average duration of human life. The average du-

ration of life may be deduced from tables which show the

number of deaths which occur each year out of a given num-
ber of individuals. If there were a million of births in the

year 1770, and we had a record of the number of deaths out

of this company for each year to the present time, we could

construct a table showing the average duration of life for each

age. The average duration of life for a person of a certain

age is understood to be the average number of years which
the survivors of that age should live. The duration of life is

different in different countries. The curve line in the follow-

ing figure shows the average duration of life as deduced from

Euttcra
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observations made at Carlisle, Eng. The numbers at the bot-

tom of the figure show the age of the individual from to 100

years, and the numbers on the left margin show the average

duration of life. This average duration of the life of individ-

uals after any specified age is called the expectation of life.

We see from the figure that the average duration of life

for an infant just born is 38 years. If the child survives, its

expectation of life increases for a few years, and attains its

maximum at the age of 5, when the average duration of life is

51 years. After this age the average duration of life dimin-

ishes steadily and pretty uniformly until death. At the age of

25 the average duration of life is 38 years, at 50 it is 21 years,

at 75 it is 7 years, and at 100 it is 2 years.

II. Relations of several variables depending upon a com-

mon variable. When we have several variable elements de-

pending upon a common variable, we may graduate a horizon-

tal line to represent successive values of the common variable,

and then construct a number of curve lines to represent the

changes in each of the other variables. A comparison of the

different curves will show not only the relation of each variable

to the common variable, but also the mutual relation of the

several variables.
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Ex. 1. Temperature beloio the earth's surface. Suppose we
wish to discover how the diurnal and annual changes of tern-

perature are modified by depth below the surface of the earth.

For this purpose we require observations of temperature made
at different depths below the earth's surface, and continued at

least throughout an entire year. Such observations have been

made at several places in Europe. Thermometers wTith very

long stems have been buried at depths of 24, 12, 6, and 3 French

feet, and 1 inch, and the observations have been continued for

many years. The annexed figure presents a summary of such

Observations COIltm- Apr. May Jun. Jgl^Ang. Sep. Oct. IVov. Dec. Jan. Teb.Mar.Apr.

ned for 14 years at
'

Greenwich, the
months being given

at the top of the fig-

ure, and the temper-

atures on the left

margin.

We perceive from

the figure that at a
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depth of about 6 feet 5o

the annual range of 4s

temperature is only 4c

about half what it «

is at the surface ; at 42

the depth of 12 feet 40

the annual range of temperature is less than one third, and at

the depth of 24 feet it is only one ninth what it is at the sur-

face. We also perceive that the highest temperature of the

year occurs later and later as we descend below the surface of

the earth. At the depth of 12 feet the maximum temperature

of the year occurs about the last of September, and the mini-

mum about the last of March, while at the depth of 24 feet the

maximum occurs about the first of December, and the minimum
about the first of June.

Ex. 2. Declination of the magnetic needle and the solar
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spots. The surface of the sun often exhibits black spots of

irregular form and variable size. The number of these spots

varies greatly in different years ; sometimes the sun is entirely

free from them, and continues thus for months together, while

some years the sun is never seen entirely free from spots. The
curve in the lower part of the annexed figure presents a sum-
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mary of observations of the spots for a period of 04 years, the

dates being given at the bottom of the figure, while the fre-

quency of the spots is exhibited on the left margin by a scale

of numbers extending from to 100. We readily perceive

that the spots are subject to a certain periodicity, the number
of the spots increasing for 5 or 6 years, and then decreasing

for several years, showing alternate maxima and minima. The
maxima occurred in 1817, 1830, 1837, 1818, and 1860, while

the minima occurred in 1810, 1823, 1833, 1843, 1856, and 1867.

A magnetic needle, when freely suspended and carefully ob-

served from hour to hour, exhibits a small daily oscillation va-

rying from 5
r

to 15
7

, The extent of this oscillation varies with
the season of the year, and the mean annual range varies from
one year to another. The curve in the upper part of the above
figure shows the results of observations of the magnetic needle



APPENDIX. 249

made in Europe for a period of G4 years, the dates being shown

at the bottom of the figure, and the mean daily average of the

needle being shown by numbers on the left margin, which rep-

resent minutes of arc.

We see from the figure that the range of the needle, which

was only 6' in 1810, had increased to 8' in 1818, had decreased

again to about 6' in 182-1, and increased to 10' in 1829, etc. In

other words, the annual range of the magnetic needle shows

alternate maxima and minima, and the times of these maxima
correspond remarkably with the maxima of the solar spots,

suggesting the idea that the two phenomena are dependent

upon a common cause. Such a mode of representation by

curve lines is well calculated to show the connection between

two different classes of phenomena.

III. Relations of two variables expressed by polar co-ordi-

nates. The relations between two variable elements may be

expressed by means of polar co-ordinates, and this method is

generally to be preferred when one of the variables denotes

direction ; for example, if one of the variables is the direction

of the wind, and the other variable is the corresponding mean
height of the barometer, or thermometer, or hygrometer* For

example, suppose we wish to show the dependence of the tem-

perature of the air upon the direction of the wind.

Ex. 1. Influence ofthe wind on temperature. From a com-

parison of several years of observations, it has been found that

atXew Haven the temperature of the air during the prevalence

of winds from the eight principal points of the compass differs

from the mean temperature of the year by the quantities shown

in the annexed table

:

Wind. TL-mperature. Wind. Temperature.

North
Northeast
East
Southeast

— 2°.

7

-o !g

+ .5

+ 1 .2

South
Southwest
West
Northwest

+3°.2
+ 4 .0

-1 .1

-4 .5

In order to represent these results by a curve line, we draw

L2
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eight radii inclined to each oth-

er in angles of 45°, to represent

the directions of the wind. "With

the point A as a centre, we draw

a series of equidistant circum-

JE ferences, to represent differences

of temperature, and then, having

selected one of these to represent

the mean temperature of New
Haven, we set off upon the eight

radii distances proportional to

the numbers in the preceding table. When the numbers are

negative, we set them off towards the centre of the circle

;

when they are positive, we set them o&from the centre. The
curve line passing through the eight points thus determined

shows the influence of the wind's direction upon the tempera-

ture of the air. We perceive that the highest temperature ac-

companies a wind from S. 33° W., and the lowest temperature

corresponds to a wind from the point N. 40° W., the mean dif-

ference in the temperature of these two winds being 8°.7.

Ex. 2. Direction oftheprevalent wind. The prevalent wind

at any station may be graphically represented by means of polar

co-ordinates. Suppose we have a

long series of observations of the

wind from which we deduce the

number of times the wind was ob-

served to blow from the north

point; also the number of times

it blew from the northwest, the

number of times from the west,

and so on, for 8 or 16 points of the

compass. We draw two lines at

right angles to each other to rep-

resent the cardinal points, and also

other lines to represent the interme-

diate directions. From the point

N".

w

K.W.v j Hf y^'E-

^f T

/y

s.w.' ^1 Ns.E.

E.
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of intersection we set off on these lines distances correspond-

ing to the relative frequency of the winds from these different

points of the compass. The curve line passing through the

points thus determined may be regarded as showing the prev-

alent wind for that station.

The preceding figure shows the results of observations made
during the month of January for several years at Wallingford,

near New Haven. We see that the prevalent wind is almost

exactly from the north, but that winds from the S.S.W. are also

of frequent occurrence.

This mode of representation is valuable when we wish to

exhibit the peculiarities of a large number of stations. The

eye is thus able at a glance to detect characteristic peculiarities

which might be easily overlooked in a large collection of nu-

merical results.

Ex. 3. Diurnal change in the direction of the wind. An-

other mode of representation, bearing some resemblance to the

preceding, may be advantageously employed to denote the con-

nection between the hour of the day and the corresponding

direction of the wind. Suppose, from a long series of observa-

tions, we have determined the mean direction of the wind for

each hour of the day. Having drawn two lines at right angles

to each other to represent the cardinal points of the compass,

we begin with the observation for the first hour, and draw a

line of any convenient length to represent the wind's direction

at that hour ; from the extremity of this line we draw a line

of the same length as before, to represent the wind's direction

at the second hour, and in the same manner we set off the di-

rections of the wind for each of the twenty-four hours. "We

thus construct a broken line, which may be regarded as repre-

senting the average progress of a particle of air for each hour

of the day, supposing the wind's velocity to have been the same

at all hours ; or, if we have observations showing the wind's

velocity for each hour, we may make the portions of the curve

which represent the wind's direction for the different hours rep-

resent not only its direction, but, at the same time, its velocity.
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The annexed figure shows the mean di-

rection of the wind at New Haven for the

different hours of the day during the month
of August. We perceive that early in the

morning the average direction of the wind

for this month is from the north, while dur-

ing the afternoon its average direction is

from the south, and about 10 A.M. the wrind

veers from N. to S., going round by the east.

This diurnal change in the wind's direction

constitutes what is commonly known by

the name of a " land and sea breeze."

The change in the wind's direction for the other months of

the year may be represented in a similar manner.

IV. Contour lines and geographical distribution. If it is

required to represent upon a map the undulations in the surface

of a tract of land, we suppose the surface of the ground to be

intersected by a number of horizontal planes at equal distances

from each other, and we delineate on paper the curve lines in

which these planes intersect the surface.

Ex. 1. Survey ofan undulating surface. This method will

be understood from the annexed figure, which represents a

B



APrENDIX. 253

tract of broken ground divided by a stream, EF. The ground

is supposed to be intersected by a horizontal plane four feet

above F, the lowest point of the tract, and this plane intersects

the surface of the ground in the undulating lines marked 4, one

on each side of the stream. A second horizontal plane is sup-

posed to be drawn eight feet above F, and this intersects the

surface of the ground in the lines marked 8. In like manner,

other horizontal planes are drawn at distances of 12, 16, etc.,

feet above the point F. The projection of these lines upon

paper shows at a glance the outline of the tract.

Ex. 2. Depth ofwater in a harbor. If we have soundings

showing the depth of water at numerous points of a harbor,

the results may be delineated on paper in a similar manner.

We draw a curve line joining all those points where the depth

of water is the same—for example, 10 feet. We draw another

line connecting all those points where the depth of water is 20

feet ; also other lines for 30 feet, 40 feet, etc.

The accompanying figure represents a portion of New York
Harbor, and the dotted lines show depths of 20, 40, and 60 feet

of water. We see that along the channel of the North River
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there is every where a depth of at least 40 feet, but in passing

from the North River to East River there are obstructions

where the depth of water is only 20 feet.

A similar principle is now very extensively employed to rep-

resent almost every variety of variable quantity depending

upon geographical position. In many cases the representation

is greatly assisted by variations in the depth of shading, or by

varieties of color, etc. The following examples will afford

some idea of this method.

Ex. 3. Lines of equal mean temperature. We draw upon a

map of the earth a curve line connecting all those places whose

mean temperature is the same—for example, 80°. As it may
happen that we have no station wiiose observed temperature is

exactly 80°, we select two adjacent stations, at one of which

the temperature is a little less than 80°, and at the other a

little greater; we then divide the interval between them in

the same ratio as the differences between the observed temper-

atures and 80°. The point thus determined we call a point of

80° temperature. In the same manner we determine as many
points of this line as practicable. Next we draw a line con-

necting all those places whose mean temperature is 70°, G0°,

50°, etc. The figure on the opposite page exhibits such a sys-

tem of lines for nearly the entire globe. Maps of this kind,

when carefully constructed, give a much clearer idea of the

distribution of heat on the earth's surface than can be done by

any system of numbers arranged in tables.

In like manner we may draw lines representing the mean
temperature of different places for any month of the year, or

we may draw lines to represent the temperatures observed for

any given day and hour, thus enabling us to study the actual

distribution of temperature at any instant of time.

Ex. 4. Lines of equal atmosp7ieric pressure. We may draw

upon a map of the earth a curve line connecting all those places

where the mean pressure of the air, as shown by a barometer,

is the same—for example, 30 inches. We may also draw lines

connecting those places where the mean pressure is 29.9 inch-
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es, also 29.S inches, etc. ; or we may draw lines connecting all

those places where the pressure is the same at any given day
and hour, thus enabling us readily to follow the daily fluctna-
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tions attending the progress of storms over the surface of the

earth.

The annexed figure shows the state of the barometer and

the direction of the wind as observed near the centre of a vio-

lent storm which prevailed in the neighborhood of New York
February 16,1842. The small oval line shows the area within

Portsmouth

— .70 Inch.

which the barometer sunk eight tenths of an inch below the

mean, and the larger oval shows the area within which the

barometer was depressed seven tenths of an inch. The long

arrow represents the direction in which the storm advanced,

while the short arrows show the observed direction of the wind

at nearly forty different stations.

Ex. 5. Lines of equal magnetic declination, dij), etc. We
may draw upon a map of the earth curve lines connecting all

those places where the declination of the magnetic needle is

the same, or where the dip of the magnetic needle is the same,

or the earth's magnetic intensity is the same. Such lines give
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a far more distinct idea of the distribution of magnetism over

the earth's surface than could be furnished by any amount of

numerical results exhibited in a tabular form.

The annexed figure shows the lines of equal magnetic decli-

nation for a portion of the United States for the year 1850.

m
TV

T
e perceive that the line of no declination passed through the

centre of Lake Erie, and met the Atlantic near the middle of

the coast of North Carolina. The line of 10 degrees west dec-

lination passed near Montreal, and the line of 8 degrees east

declination passed near St. Louis. These lines show a small
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motion from year to year, and at present they all have a posi-

tion westward of the positions represented on the map.

The map also shows the line of 65° magnetic dip, of 70°, and

of 75° dip.

Ex. 6. How the principal phenomena of a storm may be

represented. Winter storms in the United States are of great

extent, sometimes exceeding 1000 miles in diameter. In order

to represent the phenomena of such a storm, we require some

suitable means of designating the area upon which rain or

snow is falling ; we wish to denote the region around the mar-

gin of the storm where clouds prevail without rain ; and we
wish to represent the region of clear sky which encircles the

storm on every side. We wish also to represent the depression

of the barometer within the storm area ; also the state of the

thermometer and the direction of the w^ind for each station of

observation. The mode of accomplishing some of these ob-

jects will be understood from the figure on the opposite page,

which represents the principal phenomena of a violent storm

which was experienced in the United States December 20,

1836. The map represents the phenomena for 8 P.M.

The deeply shaded portion in the middle of the figure rep-

resents the area where rain or snow was falling; the lighter

shade on the east and west margins of the rain represents the

region where clouds prevailed without rain. Throughout the

remaining portion of the United States, as far as the map ex-

tends, clear sky prevailed.

The dotted curve lines represent the state of the barometer.

The inner curve shows the area where the barometer was de-

pressed four tenths of an inch below the mean ; the next curve

shows where the barometer was two tenths of an inch below

the mean; the next curve shows the barometer at its mean
height; while farther eastward the barometer stood two tenths

of an inch and four tenths of an inch above the mean.

The arrows show the directions of the wind as observed at a

large number of stations.

A similar map, constructed for 8 A.M., December 21, would
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show not only that the storm had traveled eastward, but that

important changes had taken place within the storm area.

This mode of representing the phenomena of a storm not

merely compresses a vast amount of information within a small

space, but it constitutes a powerful instrument of research, as

it indicates a connection between the different classes of obser-

vations which might entirely escape notice if the comparisons

were limited to a collection of observations arranged in a tab-

ular form.

V. Relations ofthree independent variables. Since two co-

ordinates are required to determine the position of a point on
a plane, every point of a plane may be considered as corre-

sponding to the known values of two of the variable elements.

Take now three corresponding values of the three elements;
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set off two of them as abscissa and ordinate on the given plane,

and at the point thus determined erect a perpendicular whose

length is proportional to the corresponding value of the third

element. Proceed in the same manner with every three cor-

responding values of the three variables. The extremities of

all these perpendiculars will be situated upon a curved surface

which represents the law connecting the three variable ele-

ments. Suppose now a system of equidistant planes to be

drawn parallel to the plane first assumed ; these planes will in-

tersect the curved surface in curve lines whose form will indi-

cate the undulations of that surface. Let these curves be now
projected on the plane first assumed, and we shall have on a

single plane a system of curve lines which give a precise idea

of the changes of the third variable corresponding to any given

change of the other two variables.

Ex. Temperature at any hour and for any month. Let it

be required to represent to the eye, by means of curve lines,

the mean temperature of a given place for any hour of the day

or any month of the yeaT. "We mark off on the axis of abscis-

sas equal divisions to represent the months of the year, and on

the axis of ordinates we set off, in like manner, twenty-four

equal divisions to represent the hours of the day, and through

these points of division we draw lines parallel to the co-ordinate

axes. We are supposed to have a table, derived from observa-

tion, which shows us the mean temperature of the given place

for each hour and each month of the year. We now select

any temperature—for example, 32°—and find the two hours of

eacli month at which that temperature occurs. At the inter-

section of the abscissa and ordinate corresponding to the given

month and hour wTe place a point, and we do the same for each

of the dates where the given temperature occurs. We join all

these points by a continuous curve line, and we have a repre-

sentation of the curve of 32°. In like manner we draw the

curve of 30°, of 28°, etc., through the entire range of the ob-

servations. The figure on the opposite page shows the results

of a loner series of observations at New Haven.
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Noon

October November December January February Marcli April May

Such a figure shows at a glance the mean temperature cor-

responding to any hour of either month of the year. If, for

example, we desire to know the mean temperature of the month

of January at 6 A.M., we find 6 A.M. on the left margin of the

table, and follow along the corresponding horizontal line until

we reach the middle of the month of January. The point

falls nearly on the curve of 22°, which is therefore the temper-

ature sought. In like manner we may find the temperature

corresponding to any hour of any month of the year.

The same figure shows the season of the year and the

hour of the day when the lowest temperature occurs. It also

shows, for any season of the year, the two hours which have

the same temperature ; also, for any hour of the day, the two

seasons of the year which have the same temperature. It also

shows when the temperature changes most slowly, and when

it changes most rapidly.

In a similar manner we may construct a system of curve

lines representing the relation between any three independent

variables.

THE END.
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